Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a) Xét ∆BHI và ∆IDC có :
BI = IC ( I là trung điểm BC )
HIB = CID ( đối đỉnh)
HI = ID ( I là trung điểm HD )
=> ∆BHI = ∆IDC (c.g.c)
=> HBI = IDC( tương ứng)
Mà 2 góc này ở vị trí so le trong
=> BH //DC
Mà H \(\in\)BB'
=> HB //DC
=> HBC + BCD = 180° ( trong cùng phía)
=> BCD = 180° - 90° = 90°
Hay CD\(\perp\)AC
a. Tứ giác AEHD có 3 góc vuông => AEHD là hình chữ nhật
=> DE = AH
b.* Vì D thuộc AB =>
* Gọi O là giao của DE và AH
AEHD là hình chữ nhật => OA = OE => Tam giác OAE cân => hay (1)
Có : ( Hệ quả định lý tổng 3 góc của 1 tam giác ) (2)
Tương tự có : (3)
Từ (1),(2),(3) => đpcm
c. GỌi K là giao của DE và AM
M là trung điểm của cạnh huyền BC trong tam giác ABC vuông tại A => AM là trung tuyến => AM = MC => Tam giác MAC cân =>hay
.
Mà (theo (3))
=>
Áp dụng định lý tổng 3 góc của 1 tam giác tính được :
=> đpcm
P/s: Tham khảo nhé, mà hình như đề thiếu thì phải??
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét tứ giác BHCK có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo HK
Do đó: BHCK là hình bình hành
b: Ta có: BHCK là hình bình hành
nên BH//CK
mà BH\(\perp\)AC
nên CK\(\perp\)AC
hay ΔCAK vuông tại C