Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.
\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.
\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC. Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.
Xét \(\Delta\)BAD và \(\Delta\)CAD có:
AB=AC
AD chung \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)
BD=CD
\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.
Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.
Xét \(\Delta\)CAD và \(\Delta\)COB có:
^CDA=^CBO
DC=BC \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)
^ACD=^OCB
\(\Delta COA\)cân tại C (đpcm)
\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)
Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC )
\(\widehat{MCA}=60^o-50^o=10^o\)
\(\Delta AMB=\Delta AMC\)( c.c.c )
suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)
\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )
CM được tam giác COA cân tại C
\(\widehat{ACO}=45^o-15^o=30^o\)
\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)
\(\widehat{BAO}=90^o-75^o=15^o\); \(\widehat{ABO}=45^o-30^o=15^o\)
Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O
Câu 1:
Xét tam giác AMB và tam giác AMC ta có:
AB = AC (tam giác ABC cân tại A)
ABM = ACM (tam giác ABC cân tại A)
=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)
Câu 2:
a) Ta có: +) AK+KB = AB => KB = AB-AK
+) AH+HC = AC => HC = AC-AH
Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)
=>KB=HC
Xét tam giác BHC và tam giác CKB ta có:
HC=KB (cmt)
HCB=KBC (tam giác ABC cân tại A)
BC là cạnh chung
=>tam giác BHC = tam giác CKB (c.g.c)
=>BH=CK (2 cạnh tương ứng) (dpcm)
Xét tam giác ABH và tam giác ACK ta có:
AB=AC (tam giác ABC cân tại A)
BH=CK (cmt)
AH=AK (gt)
=> tam giác ABH = tam giác ACK (c.c.c)
=> ABH = ACK (2 góc tương ứng) (dpcm)
b) Theo a) tam giác BHC= tam giác CKB
=> HBC=KCB (2 góc tương ứng) hay OBC=OCB
=> Tam giác OBC là tam giác cân tại O (dpcm)
c) Theo b tam giác OBC cân tại O => OB=OC
Theo a góc ABH = góc ACK => KBO= HCO
Xét tam giác OKB và tam giác OHC ta có:
KB=HC (theo a)
KBO=HCO (cmt)
OB=OC (cmt)
=> tam giác OKB = tam giác OHC (c.g.c)
=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)
d) Gọi giao điểm của AO và KH là I
Xét tam giác AKO và tam giác AHO ta có:
AK=AH (gt)
AO là cạnh chung
OK=OH (theo c)
=> tam giác AKO = tam giác AHO (c.c.c)
=> KAO = HAO (2 góc tương ứng) hay KAI=HAI
Xét tam giác KAI và tam giác HAI ta có:
AK=AH (gt)
KAI=HAI (cmt)
AI là cạnh chung
=> tam giác KAI = tam giác HAI ( c.g.c)
=> KI=HI , mà I nằm giữa H và K
=> I là trung điểm của KH hay
AO đi qua trung điểm của KH (dpcm)
Chịu tôi mới lop5 làm sao dc