Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\dfrac{c}{b+c}\overrightarrow{BC}=\dfrac{\left(b+c\right)\overrightarrow{AB}+c\overrightarrow{BC}}{b+c}=\dfrac{b\overrightarrow{AB}+c\overrightarrow{AC}}{b+c}\)
\(\Rightarrow AD^2=\dfrac{\left(b\overrightarrow{AB}+c\overrightarrow{AC}\right)^2}{\left(b+c\right)^2}=\dfrac{2b^2c^2+2b^2c^2.cosA}{\left(b+c\right)^2}=\dfrac{2b^2c^2\left(1+cos\alpha\right)}{\left(b+c\right)^2}\)
\(\Rightarrow AD=\dfrac{bc\sqrt{2+2cos\alpha}}{b+c}\)
2.
\(MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3MG^2+GA^2+GB^2+GC^2\)
\(=3MG^2+\dfrac{4}{9}\left(AM^2+MB^2+MC^2\right)\)
\(=3MG^2+\dfrac{4}{9}\left(\dfrac{2b^2+2c^2-a^2}{4}+\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\right)\)
\(=3MG^2+\dfrac{4}{9}.\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
\(=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
Bài 14.
Áp dụng định lí hàm số Cô sin, ta có:
\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)
Bài 19.
Áp dụng định lí sin và định lí Cô sin, ta có:
\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\sqrt{5}\)
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
\(S_{IAB}=\dfrac{1}{2}IH.AB=\dfrac{1}{2}IH.2AH=IH.\sqrt{IA^2-IH^2}=IH.\sqrt{20-IH^2}\)
\(\Rightarrow IH\sqrt{20-IH^2}=8\)
\(\Rightarrow IH^4-20IH^2+64=0\Rightarrow\left[{}\begin{matrix}IH=4\\IH=2\end{matrix}\right.\)
\(\overrightarrow{IM}=\left(-1;-2\right)\Rightarrow IM=\sqrt{5}\), mà \(IH\le IM\Rightarrow IH=2\)
Gọi \(\left(a;b\right)\) là 1 vtpt của \(\Delta\) với a;b không đồng thời bằng 0
\(\Rightarrow\) Phương trình \(\Delta\): \(a\left(x-1\right)+b\left(y+3\right)=0\Leftrightarrow ax+by-a+3b=0\)
\(d\left(I;\Delta\right)=IH\Leftrightarrow\dfrac{\left|2a-b-a+3b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|a+2b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2+4ab+4b^2=4a^2+4b^2\)
\(\Rightarrow3a^2-4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(0;1\right)\\\left(a;b\right)=\left(4;3\right)\end{matrix}\right.\) \(\Rightarrow\) có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y+3=0\\4x+3y+5=0\end{matrix}\right.\)
a)\(\overrightarrow{AC}=\left(4;0\right)\Rightarrow\overrightarrow{N}_{AC}=\left(0;4\right)\)
Phương trình đường thẳng AC : \(4y-4=0\)
Phương trình đường thẳng BH vuông góc AC : \(4x+c=0\)
Thay tọa độ điểm B được : \(c=-4\)
Phương trình đường thẳng BH :\(4x-4=0\)
b) \(\overrightarrow{AB}=\left(0;3\right)\)
Gọi M,N lần lượt là trung điểm AB,AC
\(M\left(1;\frac{5}{2}\right)\)
\(N\left(3;1\right)\)
Phương trình đường thẳng đi qua M vuông góc AB hay là đường trung trực AB: \(3y-\frac{15}{2}=0\)
\(\overrightarrow{AC}=\left(4;0\right)\)
Phương trình đường trung trực AC : \(4x-12=0\)
Tâm I đường tròn ngoại tiếp tam giác là nghiệm của hệ:
\(\left\{{}\begin{matrix}3y-\frac{15}{2}=0\\4x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=\frac{5}{2}\end{matrix}\right.\)
\(\overrightarrow{IA}=\left(-2;-\frac{3}{2}\right)\)
\(IA=R\)
\(IA=\sqrt{\left(-2\right)^2+\left(\frac{-3}{2}\right)^2=\frac{5}{2}}\)
Phương trình đường tròn ngoại tiếp tam giác ABC: \(\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2,2\right)\\\overrightarrow{BC}=\left(-5,-1\right)\\\overrightarrow{AC}=\left(-3,1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{2^2+2^2}=2\sqrt{2}\\BC=\sqrt{\left(-5\right)^2+\left(-1\right)^1}=\sqrt{26}\\AC=\sqrt{\left(-3\right)^2+1^2}=\sqrt{10}\end{matrix}\right.\)
\(p=\dfrac{2\sqrt{2}+\sqrt{26}+\sqrt{10}}{2}\)
Áp dụng công thức Herong:
\(S=\sqrt{p.\left(p-2\sqrt{2}\right)\left(p-\sqrt{26}\right)\left(p-\sqrt{10}\right)}=\sqrt{16}=4\)