K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c) Ta có: MH//AB(cmt)

nên EH//AB

Suy ra: \(\widehat{CHE}=\widehat{CBA}\)(hai góc đồng vị)

mà \(\widehat{CBA}=\widehat{HCE}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{EHC}=\widehat{ECH}\)

Xét ΔEHC có \(\widehat{EHC}=\widehat{ECH}\)(cmt)

nên ΔEHC cân tại E(Định lí đảo của tam giác cân)

Ta có: \(\widehat{ECH}+\widehat{EAH}=90^0\)(ΔAHC vuông tại H)

\(\widehat{EHC}+\widehat{AHE}=90^0\)(HE là tia nằm giữa hai tia HC,HA)

mà \(\widehat{EHC}=\widehat{ECH}\)(cmt)

nên \(\widehat{EAH}=\widehat{EHA}\)

Xét ΔEHA có \(\widehat{EAH}=\widehat{EHA}\)(cmt)

nên ΔEHA cân tại E(Định lí đảo của tam giác cân)

Ta có: EH=EC(ΔEHC cân tại E)

mà EH=EA(ΔEHA cân tại E)

nên EC=EA

hay E là trung điểm của AC(Đpcm)

a) Xét ΔAIH và ΔMIB có 

IA=IM(gt)

\(\widehat{AIH}=\widehat{MIB}\)(hai góc đối đỉnh)

IH=IB(I là trung điểm của BH)

Do đó: ΔAIH=ΔMIB(c-g-c)

Suy ra: AH=MB(hai cạnh tương ứng) 

Xét ΔBMA có 

AB+BM>AM(Bđt tam giác)

mà AH=MB(cmt)

nên AB+AH>AM(Đpcm)

b) Xét ΔBIA và ΔHIM có

IA=IM(gt)

\(\widehat{BIA}=\widehat{HIM}\)(hai góc đối đỉnh)

IB=IH(I là trung điểm của BH)

Do đó: ΔBIA=ΔHIM(c-g-c)

Suy ra: \(\widehat{IBA}=\widehat{IHM}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//MH(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét tứ giác AHMB có

I là trung điểm chung của MA và HB

=>AHMB là hình bình hành

=>BM=AH

AB+AH=AB+BM>AM

b: Xét ΔABC có

H là trung điểm của BC

HE//AB

=>E là trung điểm của AC

ΔAHC vuông tại H

mà HE là trung tuyến

nên EH=EC

=>ΔEHC cân tại E

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
4 tháng 3 2016

giúp mình với