Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC
a, tam giác ABH và tam giác CAH có:
AB = AC
AH: cạnh chung
góc H1 = góc H2 (=90*)
=> tam giác ABH = tam giác CAH
=> HB = HC (cạnh tương ứng )
=> góc BAH = góc CAH ( góc tương ứng)
ko chắc đúng đâu
b, bn tự tính nhé !!
c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC?
a, xét tam giác HAB và tam giác HAC ta có
AB=AC(gt)
góc BAH= góc AHC ( 2 góc tương ứng )
AH ( chung)
=>tam giác AHD = Tam giác AHC ( c. g.c)
=> HB=HC ( hai cạnh tương ứng )
=>góc AHC=góc AHD ( hai góc tương ứng)
b,xét tam giác ADH và tam giác AEH ta có
AH ( chung )
góc ADH = góc AEH ( ..)
c. Tam giac ABC vuông tại C
2 2 2
=> BC =AB +AC
2 2 2
=>10 = 9 + AC
2
=>AC = 100-81 =19
=>AC = 4.35
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)
Ta có:BH cạnh chung,HM=HD
suy ra tam giác HBM= tam giác HBD (cgv-cgv)
suy ra BM=BD (2 cạnh tương ứng)
xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.
b,theo câu a góc MBC =góc DBC (2 góc tương ứng)
xét tam giác MBC và tam giác DBC
TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung
uy ra tam giác BMC= tam giác DBC(C-G-C)
suy ra góc BMC=BDC (2 góc tương ứng)
c,áp dụng định lý pytago
xét tam giác AHC có HC^2=AC^2-AH^2=10^2
suy ra HC =10
xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25
suy ra MH=7,5
suy ra tam giác HMC có diện tích là 7,5*10/2=37,5
a)Xét\(\Delta BMH\)và\(\Delta BDH\)có:
BM là cạnh chung
\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)
MH=DH(GT)
Do đó:\(\Delta BMH=\text{}\text{}\Delta BDH\)(c-g-c)
\(\Rightarrow BM=BD\)(2 cạnh t/ứ)
Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)
Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)
b)Vì\(\Delta BMH=\text{}\text{}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)
Xét\(\Delta BMC\)và\(\Delta BDC\)có:
BC là cạnh chung
\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)
BM=BD(cm câu a)
Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)
\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)
c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)
hay\(26^2=24^2+HC^2\)
\(\Rightarrow HC^2=26^2-24^2=676-576=100\)
\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)
Vì\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)
Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)
\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)
\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)
DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)