Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2012a+b+c+d}{a}-2011=\frac{a+2012b+c+d}{b}-2011=\frac{a+b+2012c+d}{c}-2011\)
\(=\frac{a+b+c+2012d}{d}-2011\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(a+d\right);c+d=-\left(a+b\right);a+d=-\left(b+c\right)\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{a+b}{-\left(a+b\right)}+\frac{b+c}{-\left(b+c\right)}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(d+a\right)}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét \(a+b+c+d\) khác 0 \(\Rightarrow a=b=c=d\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Vậy...
Vào câu hỏi tương tự nhé bạn, tham khảo link này :
https://olm.vn/hoi-dap/detail/94049096720.html
Tham khảo bài này nhé cậu :
olm.vn/hoi-dap/detail/80836736586.html
Inbox tớ gửi link cho ạ :>
Từ \(\frac{2a+b+c+d}{a}=\frac{a-2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a+b+c+d=0 => a+b=-(c+d); b+c=-(a+d)
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=-4\)
Nếu a+b+c+d \(\ne\)0 => a=c=b=d
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=4\)
Vì a ; b ; c ; d > 0
=> a + b + c + d > 0
=> 2(a + b + c + d) > 0
=> 2a + 2b + 2c + 2d > 0
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
=> \(\frac{a}{2b}=\frac{1}{2}\Rightarrow2a=2b\Rightarrow a=b\)
Tương tự,ta được a = b = c = d
Khi đó A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)
= \(\frac{2013a-2012a}{2a}+\frac{2013b-2012b}{2b}+\frac{2013c-2012c}{2c}+\frac{2013d-2012d}{2d}\)(Vì a = b = c = d)
= \(\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Bài giải
a, \(\left| |3x-\frac{7}{3} | -2\right|=7\)
\(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|-2=-7\\|3x-\frac{7}{3}|-2=7\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|=-5\text{ ( loại) }\\|3x-\frac{7}{3}|=9\end{cases}}\) \(\Rightarrow\text{ }\left|3x-\frac{7}{3}\right|=9\) \(\Rightarrow\orbr{\begin{cases}3x-\frac{7}{3}=-9\\3x-\frac{7}{3}=9\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x=\frac{-20}{3}\\3x=\frac{34}{3}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{20}{9}\\x=\frac{34}{9}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{20}{9}\text{ ; }\frac{34}{9}\right\}\)
Ta có:
\(\frac{2012a+b+c+d}{a}-2011=\frac{a+2012b+c+d}{b}-2011=\frac{a+b+2012c+d}{c}-2011\)\(=\frac{a+b+c+2012d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(a+d\right);c+d=-\left(a+b\right);a+d=-\left(b+c\right)\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{a+b}{-\left(a+b\right)}+\frac{b+c}{-\left(b+c\right)}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(d+a\right)}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét \(a+b+c+d\ne0\Rightarrow a=b=c=d\)
\(\Rightarrow a+b=c+d;b+c=a+d;c+d=a+b;a+d=b+c\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}\)
\(=1+1+1+1=4\)
Vậy ...
Bạn có thể kham khảo thêm tại link:
Câu hỏi của Đào Ngọc Bảo Anh - Toán lớp 7 - Học toán với OnlineMath