K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

\(=\lim\limits\dfrac{n^2+an+5-n^2-1}{\sqrt{n^2+an+5}+\sqrt{n^2+1}}=\lim\limits\dfrac{an+4}{\sqrt{n^2+an+5}+\sqrt{n^2+1}}\)

\(=\lim\limits\dfrac{\dfrac{an}{n}+\dfrac{4}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{an}{n^2}+\dfrac{5}{n^2}}+\sqrt{\dfrac{n^2}{n^2}+\dfrac{1}{n^2}}}=\dfrac{a}{1+1}=\dfrac{a}{2}\)

\(\lim\limits\left(u_n\right)=-1\Rightarrow\dfrac{a}{2}=-1\Rightarrow a=-2\)

NV
1 tháng 3 2020

1. Bạn ghi lại đề, mẫu số ko rõ

2. \(=lim\left[-8n^6\left(1-\frac{4}{n^2}\right)^3\right]=-\infty.1=-\infty\)

3. Dãy số là CSC với \(\left\{{}\begin{matrix}u_1=-1\\d=3\end{matrix}\right.\) \(\Rightarrow u_n=-1+\left(n-1\right)3=3n-4\)

\(\Rightarrow lim\frac{3n-4}{5n+2020}=lim\frac{3-\frac{4}{n}}{5+\frac{2020}{n}}=\frac{3}{5}\)

4.

\(u_{n+1}=\frac{1}{2}u_n+\frac{3}{2}\Rightarrow u_{n+1}-3=\frac{1}{2}\left(u_n-3\right)\)

Đặt \(v_n=u_n-3\Rightarrow\left\{{}\begin{matrix}v_1=-2\\v_{n+1}=\frac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\frac{1}{2}\Rightarrow v_n=-2.\frac{1}{2^{n-1}}\Rightarrow u_n=v_n+3=-\frac{1}{2^{n-2}}+3\)

\(\Rightarrow lim\left(u_n\right)=lim\left[-\frac{1}{2^{n-2}}+3\right]=3\)

5.

\(u_{n+1}=u_n+\frac{1}{2^n}\Rightarrow u_{n+1}+\frac{2}{2^{n+1}}=u_n+\frac{2}{2^n}\)

Đặt \(v_n=u_n+\frac{2}{2^n}\Rightarrow\left\{{}\begin{matrix}v_1=3\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=...=v_1=3\Rightarrow u_n=3-\frac{2}{2^n}\)

\(\Rightarrow u_{n-2}=3-\frac{2}{2^{n-2}}\Rightarrow lim\left(u_{n-2}\right)=lim\left(3-\frac{2}{2^{n-2}}\right)=3\)

Tính \(u_{n-2}\) hay \(u_n-2\) nhỉ? Ko dịch nổi nên đoán đại

14 tháng 11 2019

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 2)

Chọn C

18 tháng 2 2021

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)

21 tháng 8 2019

* Xét tử số: Ta thấy 1, 2, 3, 4, ...,  n là một dãy số thuộc cấp số cộng có n số hạng với

u 1   =   1 ; d= 1 .

Tổng n số hạng của cấp số cộng: S n = u 1 + u n n 2 = 1 + n n 2 .

* Xét mẫu số: Ta thấy 1 , 3 , 3 2 , 3 3 , ... , 3 n  là một dãy số thuộc cấp số nhân có n + 1 số hạng với u 1   =   1  ; q = 3

Tổng (n+ 1) số hạng của cấp số nhân:  S n + 1 = u 1 . 1 − q n + 1 1 − q = 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 2 .

⇒ u n = n 3 n + 1 − 1 = n 3.3 n − 1

Bằng quy nạp ta luôn có n < 2 n ,   ∀ n ∈ ℕ *  và 3 n > 1 ,   ∀ n ∈ ℕ *

⇒ u n = n 3.3 n − 1 < n 3 n < 2 n 3 n = 2 3 n

Vì lim 2 3 n = 0  nên  lim u n = 0.

Chọn đáp án A

29 tháng 11 2023

\(U_n=\dfrac{an^2-1}{n^2+3}\)

\(=\dfrac{an^2+3a-3a-1}{n^2+3}\)

\(=a+\dfrac{-3a-1}{n^2+3}\)

Để dãy này là dãy tăng thì \(U_{n+1}>U_n\)

=>\(a+\dfrac{-3a-1}{\left(n+1\right)^2+3}>a+\dfrac{-3a-1}{n^2+3}\)

=>\(\dfrac{-3a-1}{\left(n+1\right)^2+3}>\dfrac{-3a-1}{n^2+3}\)

=>\(\dfrac{3a+1}{\left(n+1\right)^2+3}< \dfrac{3a+1}{n^2+3}\)(1)

TH1: 3a+1>0

=>a>-1/3

(1)=>\(\dfrac{1}{\left(n+1\right)^2+3}< \dfrac{1}{n^2+3}\)

=>\(\left(n+1\right)^2+3>n^2+3\)

=>\(\left(n+1\right)^2>n^2\)

=>\(n^2+2n+1-n^2>0\)

=>\(2n+1>0\)(luôn đúng với mọi n>=1)

TH2: 3a+1<0

=>a<-1/3

(2) trở thành \(\dfrac{1}{\left(n+1\right)^2+3}>\dfrac{1}{n^2+3}\)

=>\(\left(n+1\right)^2+3< n^2+3\)

=>\(n^2+2n+1-n^2< 0\)

=>2n+1<0

=>2n<-1

=>\(n< -\dfrac{1}{2}\)(loại)

Vậy: \(a>-\dfrac{1}{3}\)

NV
5 tháng 2 2021

\(\lim\left(1+\dfrac{-1}{2^n}\right)=1+0=1\Rightarrow a=1\)

\(\lim\left(\dfrac{n^5}{n^4-2n^3+1}-n\right)=\lim\left(\dfrac{n^5-n\left(n^4-2n^3+1\right)}{n^4-2n^3+1}\right)\)

\(=\lim\left(\dfrac{2n^4-n}{n^4-2n^3+1}\right)=\lim\left(\dfrac{2-\dfrac{1}{n^3}}{1-\dfrac{2}{n}+\dfrac{1}{n^4}}\right)=2\)

15 tháng 10 2023

a: \(\dfrac{u_n}{u_{n-1}}=\dfrac{3^n}{2^{n+1}}:\dfrac{3^{n-1}}{2^n}\)

\(=\dfrac{3^n}{3^{n-1}}\cdot\dfrac{2^n}{2^{n+1}}=\dfrac{3}{2}>1\)

=>(un) là dãy tăng

c: ĐKXĐ: n>=1

\(u_n=\sqrt{n}-\sqrt{n-1}\)

\(=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}\)

\(\dfrac{u_n}{u_{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}:\dfrac{1}{\sqrt{n-1}+\sqrt{n-2}}\)

\(=\dfrac{\sqrt{n-1}+\sqrt{n-2}}{\sqrt{n-1}+\sqrt{n}}< 1\)

=>Đây là dãy số giảm