Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(u_1=5\)
\(u_2-u_1=1\)
\(u_3-u_2=4\)
............
\(u_n-u_{n-1}=3\left(n-1\right)-2=3n-5\)
Cộng từng vế của đẳng thức và rút gọn ta được:
\(u_n=5+1+4+7+...+3n-5\)
\(=5+\dfrac{\left(3n-5+1\right)\left(n-1\right)}{2}=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\).
Vậy \(u_n=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\) với \(n\ge1\).
Xét hiệu:
\(u_1=5\)
\(u_n-u_{n-1}=3n-5\) \(\left(n\ge2\right)\)
Với \(n\ge2\) thì \(3n-5>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.
Lời giải:
Ta có:
\((\sqrt{n+1}+\sqrt{n})U_n=\frac{2}{2n+1}\)
\(\Rightarrow U_n=\frac{2}{(2n+1)(\sqrt{n+1}+\sqrt{n})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{2n+1}\)
\(=\frac{2(\sqrt{n+1}-\sqrt{n})}{(n+1)+n}<\frac{2(\sqrt{n+1}-\sqrt{n})}{2\sqrt{n(n+1)}}\) (áp dụng bđt am-gm thì \((n+1)+n\geq 2\sqrt{n(n+1)}\), dấu bằng không xảy ra vì \(n\neq n+1\))
hay \(U_n< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(U_1+U_2+...+U_{2010}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}\)
\(\Leftrightarrow U_1+U_2+..+U_{2010}< 1-\frac{1}{\sqrt{2011}}< \frac{1005}{1006}\)
Ta có đpcm.
a) Ta có:
u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5
u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10
b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng
Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1
Ta chứng minh công thức cũng đúng với n = k + 1,
Nghĩa là chứng minh:
Uk+1 = 2(k+1)-1 + 1 = 2k + 1
Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)
Vậy un = 2n-1 + 1 với mọi n ∈ N*