Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy phân số sau bằng 0,25 ( hay 1/4 ) phân số trước .
Phân số tiếp theo :
1/256 x 1/4 = 1/1024
Bạn thi violympic à ?
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{10}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{11}}=\frac{2^{11}-1}{2^{11}}=\frac{2047}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(2A-A=\left(1+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+...+\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}=\frac{2047}{2048}\)
\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{2014}\right)\)
A = \(\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2012}{2013}x\frac{2013}{2014}\)
A = \(\frac{2x3x4x...x2012x2013}{3x4x5x...x2013x2014}\)
a = \(\frac{2}{2014}=\frac{1}{1007}\)
Gọi an là số hạng thứ n của dãy.
Có: \(a_1=\frac{1}{8}=\frac{1}{2^3}=\frac{1}{2^{1+2}}\)
\(a_2=\frac{1}{16}=\frac{1}{2^4}=\frac{1}{2^{2+2}}\)
\(a_3=\frac{1}{32}=\frac{1}{2^5}=\frac{1}{2^{3+2}}\)
\(\Rightarrow a_n=\frac{1}{2^{n+2}}\)
\(\Rightarrow a_{45}=\frac{1}{2^{45+2}}=\frac{1}{2^{51}}\)
Ta gọi số thứ 100 là \(\frac{1}{x}\)
Ta có tổng :
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{x}\)
= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{x}\)
Ta có công thức : \(U_n=U_1+\left(n-1\right).d\)
Vậy ta áp dụng : \(U_{100}=1+\left(100-1\right).5=496\)
=) Số thứ 100 là \(\frac{1}{496.\left(496+5\right)}=\frac{1}{496.501}\)
Ta có tổng của 100 số hạng đầu tiên là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
= \(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
= \(1-\frac{1}{501}=\frac{500}{501}\)
Vậy tổng của 100 số hạng đầu tiên của dãy phân số trên là : \(\frac{500}{501}\)
Ta nhận thấy:
\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336}\) = \(\frac{1}{1\times6};\frac{1}{6\times11};\frac{1}{11\times16};\frac{1}{16\times21}\)
PS thứ 1 có TS thứ nhất của MS là: 1
PS thứ 2 có TS thứ nhất của MS là: 6
PS thứ 3 có TS thứ nhất của MS là: 11
PS thứ 4 có TS thứ nhất của MS là: 16
Vậy PS thứ 100 có TS thứ nhất của MS là: 1 + (100 - 1) x 5 = 496
Vậy TS thứ hai của MS là: 501
Ta có:
\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+....+\frac{1}{496\times501}\)
\(1-\frac{1}{501}=\frac{500}{501}\)
Chúc bạn học tốt !!!