K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

a) \(\frac{8^5.\left(-5\right)^8+\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}\)

\(=\frac{2^{15}.5^8+\left(-2\right)^5.10^9}{2^{16}.5^7+2.10^8}\)

\(=\frac{5-2^4.10}{2}\)

\(=5-8.10\)

\(=5-80\)

\(=-75\)

8 tháng 9 2017

a ) = -0,7499957912

b ) = -0,75

15 tháng 9 2016

Cau a la 1

Cau b la 1215

Cau c la 768

Cau d la \(\frac{4185}{13}\)

15 tháng 9 2016

\(\frac{4^2.4^3}{2^{10}}=\frac{4^{2+3}}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)

\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=1215\)

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^2.2^5.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^2.2^5.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)

\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\left(-3\right)^3=-27\)

1 tháng 8 2019

a) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)

\(\frac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left(5^2\right)^3.\left(2^2\right)^5}\)

\(\frac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{5^6.2^{10}}\)

\(\frac{5^8.2^6-5^7.2^6+5^7.2^{10}}{5^6.2^{10}}\)

\(\frac{5^7.2^6.\left(5-1+2^4\right)}{5^6.2^{10}}\)

\(\frac{5.20}{2^4}=\frac{25}{4}\)

2 tháng 8 2019

\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\)

\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{2^2}{5}=\frac{4}{5}\)

12 tháng 12 2017

a,đáp án đúng là (C)7

b,Giá trị x 3 4 5 6 7 8

Tần số n 1 1 7 6 3 2

18 tháng 4 2020

\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)

\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)

\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)

Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:

\(E=5x.0+105=105\)