K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2021

\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)

\(\Rightarrow AB=\dfrac{2S_{ABC}}{AC.sinA}=\dfrac{10\sqrt{3}}{3}\)

Áp dụng định lý hàm cos:

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=5,89\)

\(\Rightarrow AH=\dfrac{2S}{BC}=6,79\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2021

Bạn thay giá trị $x$ của từng đáp án vô xem $x^2-8$ có lớn hơn $4x$ không thì đáp án đó đúng

Đáp án $x=6$ (C)

3 tháng 12 2021

thank you

1: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3>=-8\\2x+3< =8\end{matrix}\right.\Leftrightarrow-\dfrac{11}{2}< =x< =\dfrac{5}{2}\)

2: \(\Leftrightarrow\left[{}\begin{matrix}-5x+3>1\\-5x+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x>-2\\-5x< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2}{5}\\x>\dfrac{4}{5}\end{matrix}\right.\)

27 tháng 6 2023

 

    1. 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
    2.  

    Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i  0 với mọi i sao cho 1  i  6.

    • Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i  0.
    • Giả sử với mọi i sao cho 1  i  k (với k  5), đều có a_i  0. Ta sẽ chứng minh rằng a_(k+1)  0.

    Nếu a_k  0, a_(k+1)  0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.

    Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1)  0.

    Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.

    1. 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
    • Với a, b, c bất kỳ, ta có ab, bc, ca  0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
    • Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.

    Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.

    Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.

    Nếu b và c đều khác 0, ta có:

    bc, ca, ab  1

    Do đó, trong 3 số bc, ca, ab, không có số nào bằng 0. Khi đó, ta có:

    b(bc)ca=ab

    Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có

    10:06
AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Lời giải:

Lấy $M(6,7)$ thuộc đường thẳng.

Vecto chỉ phương của đường thẳng: $(13,14)$. Khi đó phương trình tham số của đường thẳng là:

\(\left\{\begin{matrix} x=6+13t\\ y=7+14t\end{matrix}\right.\)