Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH\(\perp\)AB
Do đó: H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MA^2=MH\cdot MO\)
b: Xét ΔMAB có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAB cân tại M
Xét (O) có
ΔCAB nội tiếp
CB là đường kính
Do đó: ΔCAB vuông tại A
Xét tứ giác HAEM có
\(\widehat{HAE}=\widehat{AHM}=\widehat{HME}=90^0\)
Do đó: HAEM là hình chữ nhật
Suy ra: HA=EM và HA//EM
=>HB=EM và HB//EM
=>HBME là hình bình hành
Suy ra: EB đi qua trung điểm của MH
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CA⊥CB
mà CA⊥OH
nên OH//BC
b: Xét (O) có
OH là một phần đường kính
AC là dây
OH⊥AC tại H
Do đó: H là trung điểm của AC
Xét ΔMAC có
MH là đường trung tuyến
MH là đường cao
Do đó: ΔMAC cân tại M
Xét ΔOAM và ΔOCM có
OA=OC
MA=MC
OM chung
Do đó:ΔOAM=ΔOCM
Suy ra: \(\widehat{OAM}=\widehat{OCM}=90^0\)
hay MA là tiếp tuyến của (O)
a, Chú ý: K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM
b, ∆ABE:∆AKM (g.g)
=> A E A M = A B A K
=> AE.AK = AB.AM = 3 R 2 không đổi
c, ∆OBC đều
=> B O C ⏜ = 60 0 => S = πR 2 6
a: góc OAC+góc OBC=180 độ
=>OACB nội tiếp
b: góc OEA+góc OHA=180 độ
=>OEAH nội tiếp
góc OBD+góc OHD=180 độ
=>OHDB nội tiếp
góc OEH=góc OAH
góc ODH=góc OBH
mà góc OAH=gócc OBH
nên góc OEH=góc ODH
=>OE=OD
=>OA*OD=OB*OE