K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\)

\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)

\(=\dfrac{12}{12}+\dfrac{-13}{13}\)

\(=1-1\)

\(=0\)

b) \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}\)

\(=\dfrac{100^4}{100^5}\)

\(=\dfrac{1}{100}\)

15 tháng 12 2017

a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}\)

\(=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

\(=1+\left(-1\right)\)

\(=0\)

b) \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(20.5\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}.\left(2^{18}+2^8\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{18}+2^8}{1+2^{10}}=256\)

a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)

b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)

\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)

\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)

a: \(=0.5\cdot10-\dfrac{1}{7}+15=20-\dfrac{1}{7}=\dfrac{139}{7}\)

b: \(=6\cdot\dfrac{-2}{3}+12\cdot\dfrac{4}{9}+18\cdot\dfrac{-8}{27}\)

\(=-4+\dfrac{16}{3}-\dfrac{16}{3}=-4\)

c: \(=\left(\dfrac{5}{2}+\dfrac{3}{8}-\dfrac{5}{8}+\dfrac{2}{3}\right):\left(\dfrac{17}{2}+\dfrac{49}{4}-\dfrac{17}{8}+\dfrac{34}{15}\right)\)

\(=\dfrac{35}{12}:\dfrac{2507}{120}=\dfrac{350}{2507}\)

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

27 tháng 8 2017

giup mk voi cac ban oi

5 tháng 9 2018

10:15 ; \(\dfrac{16}{9}\):\(\dfrac{16}{24}\) ; \(\dfrac{2}{3}\):\(\dfrac{1}{4}\) ; 16:(-4) ; 14:21 ; -5:15 ; 12:(-3) ; -1,2:3,6

10:15=\(\dfrac{2}{3}\) ;\(\dfrac{16}{24}\)=\(\dfrac{2}{3}\) ;16:(-4)=-4 ;14:21=\(\dfrac{2}{3}\) :-5:15=\(\dfrac{-1}{3}\) ;12:(-3)=-4

-1,2:3,6=\(\dfrac{-1}{3}\)

Ta có các tỉ lệ thức: \(\dfrac{10}{15}\)=\(\dfrac{16}{24}\)=\(\dfrac{14}{21}\)=\(\dfrac{2}{3}\) ;\(\dfrac{16}{-4}\)=\(\dfrac{12}{-3}\)=-4 ;\(\dfrac{-5}{15}\)=\(\dfrac{-1,2}{3,6}\)=\(\dfrac{-1}{3}\)

20 tháng 6 2018

\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...

20 tháng 6 2018

\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....

\(=\left(\dfrac{1}{12}+\dfrac{11}{12}\right)+\left(\dfrac{1}{5}-\dfrac{6}{5}\right)+\dfrac{1}{71}=1-1+\dfrac{1}{71}=\dfrac{1}{71}\)

4 tháng 12 2017

a)\(\left|-0.75\right|+\dfrac{1}{4}-2\dfrac{1}{2}\)

=0.75+0.25-2.5

=1-2.5=-1.5

b)\(15.\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-2\dfrac{1}{5}.\left(\dfrac{-7}{5}\right)\)

=3.(-1.4)+3.08

=-4.2+3.08=-1.12

c)\(\dfrac{5}{17}+\dfrac{2}{3}-\dfrac{20}{12}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{49}{51}-\dfrac{5}{3}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{-12}{17}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{11}{153}+\dfrac{12}{17}\)

=\(\dfrac{7}{9}\)

d)\(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}\)

=\(\dfrac{67}{75}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)

=-0.44+\(\dfrac{127}{175}\)

=\(\dfrac{2}{7}\)