K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Xét \(\Delta ACE\)\(\Delta DCE\) có:

CA=CD(gt)

\(\widehat{ACE}\) =\(\widehat{DCE}\) (vì CE là tia phân giác của \(\widehat{ACD}\) )

CE là cạnh chung

\(\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\)

\(\Rightarrow\widehat{CAE}\) = \(\widehat{CDE}\) (2 góc tương ứng bằng nhau)

\(\widehat{CAE}\) =90o \(\Rightarrow\widehat{CDE}\) =90o

Ta lại có: \(\widehat{CDE}\) + \(\widehat{EDB}\) =180o

\(\Rightarrow\widehat{EDB}\) =180o -\(\widehat{CDE}\) =180o -90o=90o

Mặt khác: \(\Delta ABC\) vuông tại A có \(\widehat{B}\) + \(\widehat{C}\) =90o (2 góc nhọn phụ nhau)

\(\Rightarrow\widehat{C}\) =90o - \(\widehat{B}\) (1)

\(\Delta EDB\) vuông tại D(\(\widehat{EDB}\) =90o) có \(\widehat{BED}\) + \(\widehat{B}\) =90o(2 góc nhọn phụ nhau)

\(\Rightarrow\widehat{BED}\) =90o-\(\widehat{B}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}\) = \(\widehat{BED}\) hay \(\widehat{ACB}\) =\(\widehat{BED}\)

4 tháng 4 2020

Nếu như ABC là tam giác cân thì mới được thôi bạn

27 tháng 12 2016

Ta có hình vẽ A B C D E x

a) Xét tam giác ACE và tam giác DCE, ta có:

AC=DC( giả thiết)

Góc ACE=Góc ECD (vì tia x là tia phân giác của góc C)

CE là cạnh chung 

Do đó: tam giác ACE=tam giác DCE (c-g-c)

b) Có vẻ như đề của bạn thiếu nên mình giúp bạn câu a) thôi nhé! ^^

31 tháng 1 2022

a) Xét \(\Delta ACE\) và \(\Delta DCE\) có :

- CE chung

\(CD=CA\)

\(\Rightarrow\Delta ACE=\Delta DCE\)

\(\Rightarrow EA=ED\)

b) \(\Delta ACE=\Delta DCE\Rightarrow EDC=EAC=90^0\Rightarrow DEB+EBD=90^0\)

Mà \(BCA+EBD=90^o\Rightarrow BED=BCA\)

 

31 tháng 1 2022

Tự vẽ hình

a, xét tam giác ACE và tam giác DCE có

CD = CA ( gt)

góc DCE = góc ACE ( CE là tia phân giác)

CE chung

=>tam giác ACE = tam giác DCE ( c-g-c)

=> EA = ED, góc CDE = góc CAE (=90 độ)

b, Xét tam giác BDE vuông tại E ( vì góc CDE = 90 độ kề bù vs góc EDB nên góc EDB cx = 90 độ)

Góc DBE + góc DEB = 90 độ ( hai góc phụ nhau) (1)

Xét tam giác ABC vuông tại A ( gt)

=> góc ABC + góc ACB 90 độ ( hai góc phụ nhau) ( 2)

Từ (1) và (2) => góc BED = góc ACB ( cùng phụ vs góc EBD)

 

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!