K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 8 2021

a. Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

b.

Áp dụng hệ thức lượng:

\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)

\(IC=BC-IB=12,8\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)

b)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=IB\cdot BC\\AC^2=IC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)

NV
3 tháng 8 2021

Áp dụng Pitago:

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)

\(IC=BC-IB=12,8\left(cm\right)\)

6 tháng 1 2019

bn tự kẻ hình nhé:

a) Xét  tgiac IAB và tgiac ICA có:

góc I:  chung

góc IAB = góc ICA  (chắn cung AB)

suy ra: tgiac IAB = tgiac ICA  (g.g)

=> IA/IC  =  IB/IA  =  AB/AC

=>  IA/IC . IB/IA = AB/AC . AB/AC

=> IB/IC = AB^2/AC^2   (đpcm)

b) Theo câu a) ta có:

IA/IC = IB/IA = AB/AC = 5/7 

Đặt:  IA = 5k  thì:  IC = 7k;   IB = 25/7 k

Ta có:  IC - IB = BC

=>  \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\) 

=>   \(24=\frac{24}{7}k\)

=>  \(k=7\)

Vậy  IA = 5.7 = 35

        IC = 7.7 = 49

13 tháng 4 2020

100-89=?

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

29 tháng 10 2021

a, \(BC=BH+HC=5\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)

29 tháng 10 2021

a: BC=4+1=5(cm)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)

19 tháng 11 2021
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)

\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)

b: Xét ΔABC có BD là đường phân giác

nên AD/AB=CD/BC

=>AD/12=CD/14

=>AD/6=CD/7

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)

Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)