K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Giả sử $AB=3, AC=4, BC=5$ (cm)

Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$

$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$

$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)

$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$

$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$

Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

24 tháng 2 2022

e làm a,b chung luôn nha chị

Xét tam giác ABC và tam giác A`B`C`, có:

\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )

Góc A = góc A` = 90 độ

=> tam giác ABC đồng dạng tam giác A`B`C`

=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )

24 tháng 2 2022

=^= um dù sao cũm cảm ơn nhó:33

2 tháng 4 2021

Vì thấy chủ để là tam giác đồng dạng nên mình sửa lại đề nhé: ∆A'B'C'~∆ABC

Giải:

Vì theo đề bài: ∆A'B'C~∆ABC

\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{C'A'}{CA}\)

\(\Leftrightarrow\dfrac{A'B'}{6}+\dfrac{B'C'}{12}+\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+12+9}\)

Mà chu vi ∆A'B'C =18 cm

=> A'B'+B'C'+C'A'=18

=> \(\dfrac{A'B'}{6}+\dfrac{B'C'}{12}=\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+9+12}=\dfrac{18}{27}=\dfrac{2}{3}\)

=> \(\dfrac{A'B'}{6}=\dfrac{2}{3}\Rightarrow A'B'=\dfrac{2.6}{3}=4\left(cm\right)\)

\(\dfrac{B'C'}{12}=\dfrac{2}{3}\Rightarrow B'C'=\dfrac{2.12}{3}=8\left(cm\right)\)

\(\dfrac{A'C'}{9}=\dfrac{2}{3}\Rightarrow A'C'=\dfrac{2.9}{3}=6\left(cm\right)\)

Vậy A'C'=4cm, A'C'=6cm, B'C'=8cm

 

2 tháng 4 2021

Có phải là ∆ABC~∆A'B'C' không bạn?

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)