K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Hình thím tự vẽ

a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)

AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét \(\Delta ABC\)\(\Delta MDE\) có:

AB = DM (cmt)

BC = DE (cmt)

AC = EM (cmt)

Do đó, \(\Delta ABC=\Delta\)MDE (c.c.c)

 

 

7 tháng 12 2016

soyeon_Tiểubàng giải , giúp tớ vs !

13 tháng 11 2021

b: Xét tứ giác AEMC có

AE//MC

AC//ME

Do đó: AEMC là hình bình hành

Suy ra: Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác ABMD có

AD//BM

AB//MD

Do đó:ABMD là hình bình hành

Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AM,BD và CE đồng quy

NM
29 tháng 12 2020

A C B M D E

a. dễ thấy hai tứ giác MBAD và MCAE là hình bình hành ( do có hai cặp cạnh đối song song)

do đó

ME =AC và MD=AB, và MB=AD, MC=AE nên BC=MB+MC=AD+AE=DE

nên hai tam giác ABC = MDE theo trường hợp c.c.c

b.do ở câu a ta đã biết c MBAD và MCAE là hình bình hành nên

MA cắt BD tại trung điểm MA

MA cắt CE tại trung điểm MA

do đó ba đường MA,BD,CE cùng đi qua trung điểm AM

25 tháng 8 2020

nhanh nhé mik tích cho 8 cái lun

Vì AB // DM :

⇒DMAˆ=BAMˆ⇒DMA^=BAM^(2 góc so le trong)

⇒CAMˆ=EMAˆ⇒CAM^=EMA^(2 góc so le trong)

⇒DMAˆ+EMAˆ=CAMˆ+BAMˆ⇔DMEˆ=CABˆ⇒DMA^+EMA^=CAM^+BAM^⇔DME^=CAB^(1)

Vì EM // AC

⇒MECˆ=ACEˆ⇒MEC^=ACE^(2 góc so le trong)

⇒DECˆ=ECMˆ⇒DEC^=ECM^(2 góc so le trong)

⇒MECˆ+DECˆ=ACEˆ+ECMˆ⇔MEDˆ=ACMˆ⇒MEC^+DEC^=ACE^+ECM^⇔MED^=ACM^(2)

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image  
17 tháng 3 2018

Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
 ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)

Xét tứ giác AEMC có

AE//MC

AC//EM

Do đó: AEMC là hình bình hành

Suy ra: Hai đường chéo AM và EC cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác ABMD có

AD//BM

AB//MD

Do đó: ABMD là hình bình hành

Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AM,BD,CE đồng quy

18 tháng 12 2018

xem trên mạng nhé 

a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)

AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét ΔABCΔABC và ΔMDEΔMDE có:

AB = DM (cmt)

BC = DE (cmt)

AC = EM (cmt)

Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)