K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

\(\overrightarrow{AF}=2\overrightarrow{FC}\Rightarrow\overrightarrow{AF}=\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)

\(\overrightarrow{EI}=\frac{3}{4}\overrightarrow{IF}=\frac{3}{4}\left(\overrightarrow{IE}+\overrightarrow{EF}\right)\Rightarrow\overrightarrow{EI}=\frac{3}{7}\overrightarrow{EF}\)

\(\overrightarrow{AI}=\overrightarrow{AE}+\overrightarrow{EI}=\overrightarrow{AE}+\frac{3}{7}\overrightarrow{EF}=\overrightarrow{AE}+\frac{3}{7}\left(\overrightarrow{EA}+\overrightarrow{AF}\right)=\frac{4}{7}\overrightarrow{AE}+\frac{3}{7}\overrightarrow{EF}\)

\(\overrightarrow{AI}=\frac{4}{7}.\frac{1}{2}\overrightarrow{AB}+\frac{3}{7}.\frac{2}{3}\overrightarrow{AC}=\frac{2}{7}\overrightarrow{AB}+\frac{2}{7}\overrightarrow{AC}=\frac{4}{7}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\right)=\frac{4}{7}\overrightarrow{AM}\)

\(\Rightarrow A;M;I\) thẳng hàng

NV
19 tháng 10 2020

\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AE}+\frac{1}{2}\overrightarrow{AF}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

Gọi P là điểm trên BC sao cho \(\overrightarrow{BP}=k.\overrightarrow{BC}\)

\(\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+k.\overrightarrow{BC}=\overrightarrow{AB}+\overrightarrow{k}.\overrightarrow{BA}+k.\overrightarrow{AC}\)

\(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}=3k\left(\frac{1-k}{3k}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

A;K;P thẳng hàng khi và chỉ khi: \(\frac{1-k}{3k}=\frac{1}{4}\Rightarrow k=\frac{4}{7}\)

Vậy điểm P thỏa mãn \(\overrightarrow{BP}=\frac{4}{7}\overrightarrow{BC}\) thì A;K;P thẳng hàng

Xét \(\Delta ABC\) có:

\(M\) là trung điểm \(AB\)

\(D\) là trung điểm \(BC\)

\(\Rightarrow\) \(MD\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) \(MD\)\(=\)\(\dfrac{1}{2}AC\) và \(MD\) //\(AC\)

Ta có:

\(\overrightarrow{KD}=\overrightarrow{KM}+\overrightarrow{MD}\)

\(\Rightarrow\overrightarrow{KD}=\dfrac{1}{2}\overrightarrow{NM}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{KD}=\dfrac{1}{2}\overrightarrow{NA}+\dfrac{1}{2}\overrightarrow{AM}+\dfrac{1}{2}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{CA}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\\ \Rightarrow\overrightarrow{KD}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

29 tháng 10 2021

a: \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Lời giải:

\(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}=2\overrightarrow{BO}+(\overrightarrow{OA}+\overrightarrow{OC})\)

\(=2\overrightarrow{BO}\) (do $\overrightarrow{OA}, \overrightarrow{OC}$ là 2 vecto đối)

Và:

\(\overrightarrow{BE}+\overrightarrow{BF}=\overrightarrow{BO}+\overrightarrow{OE}+\overrightarrow{BO}+\overrightarrow{OF}=2\overrightarrow{BO}+(\overrightarrow{OE}+\overrightarrow{OF})\)

\(=2\overrightarrow{BO}\) (do $\overrightarrow{OE}, \overrightarrow{OF}$ là 2 vecto đối)

Vậy \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{BF}\)