K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

a)Ta có: $BG\bot AB,CH\bot AB\Rightarrow BG||CH$

Tương tự: $BH\bot AC,CG\bot AC\Rightarrow BH||CG$

Tứ giác $BGCH$ có các cặp cạnh đối song song nên nó là hình bình hành.

Do đó hai đường chéo $GH$ và $BC$ cắt nhau tại trung điểm của mỗi đường. Vậy $GH$ đi qua trung điểm $M$ của $BC$

b) Do $BE$ và $CF$ là các đường cao của tam giác ABC nên các tam giác $ABE$ và $ACF$ vuông. Hai tam giác vuông $ABE$ và $ACF$có chung góc A nên chúng đồng dạng.

Suy ra: $\frac{AB}{AC}=\frac{AE}{AF}\Rightarrow \frac{AB}{AE}=\frac{AF}{AC}\left( 1 \right)$

Hai tam giác ABC và AEF có góc A chung (2)

Từ (1) và (2) suy ra: $\Delta ABC\sim \Delta AEF$

c) Chứng minh tương tự ta được: $\Delta BDF\sim \Delta BAC,\Delta EDC\sim \Delta BAC$, suy ra $\Delta BDF\sim \Delta DEC\Rightarrow \widehat{BDF}=\widehat{CDE}$

d) Ta có: $\widehat{BDF}=\widehat{CDE}\Rightarrow {{90}^{o}}-\widehat{BDF}={{90}^{o}}-\widehat{CDE}$

$\Rightarrow \widehat{AHB}-\widehat{BDF}=\widehat{AHC}-\widehat{CDE}\Rightarrow \widehat{ADF}-\widehat{ADE}$

Suy ra DH là tia phân giác góc EDF.

Chứng minh tương tự ta có FH là tia phân giác góc EFD

Từ đây suy ra H là giao điểm ba đường phân giác tam giác DEF.

Vậy H là tâm của đường tròn nội tiếp tam giác DEF.

a: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE

b: Xét ΔBFC có

BH vừa là đường cao, vừa là phân giác

=>ΔBFC cân tại B

c: Xét ΔBAC và ΔBDF có

BA=BD

góc ABC chung

BC=BF

=>ΔBAC=ΔBDF

=>góc BDF=góc BAC=90 độ

=>D,E,F thẳng hàng

a: Xét ΔABC có

BE,CF là đừog cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

Xét ΔBIH và ΔCIM có

IB=IC

IH=IM

BH=CM

=>ΔBIH=ΔCIM

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: Xét ΔABF có

AE vừa là đường cao, vừa là phân giác

nen ΔABF cân tại A

b: Xét tứ giác HFKD có

HF//DK

HF=DK

Do đó: HFKD là hình bình hành

=>DH//KF và DH=KF

c: Xét ΔABC co AB<AC

nên góc C<góc ABC

3 tháng 5 2019

a) Xét ΔABD và ΔACD có:

           AD chung 

          góc ABD=góc ACD ( do AD là phân giác của góc BAC)

           AB=AC ( ΔABC cân tại A)

Do đó:ΔABD=ΔACD (c-g-c) (đpcm)

3 tháng 5 2019

  Ta có:

AD vuông góc BC(tính chất Δ vuông)

EH vuông góc BC (theo đầu bài)

=>AD//EH (cùng vuông góc với BC)

=>góc ADE=góc DEH (2 góc so le trong)

Lại có:ΔDEC cân theo câu c:

=>góc EDC=góc ECD 

mà góc ECD=góc ABD (ΔABC cân tại A)

=>góc EDC=góc ABD.

Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)

 và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)

=> góc BAD=góc DEH 

Mà góc BAD=góc DAE (AD là phân giác của góc A)

     góc ADE=góc DEH (2 góc so le trong)

=>góc DAE=góc ADE

=>ΔAED cân tại E

=>DE=AE

mà DE=EC (ΔDEC cân tại E)

=>AE=EC

=>E là trung điểm của AC

=>3 điểm B,G,E thẳng hàng (đpcm)