Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, cm tam giác EMK = tam giác FMH (c-g-c)
=> EM = MF => M là trđ của EF
Cm tam giác BEH = tam giác FHE (c-g-c) => BH // EF => EF _|_ AM
=> tam giác AEF cân tại A
không hiểu chỗ nào thì hỏi
a) Xét Δ B H M ; Δ C K M ΔBHM;ΔCKM có :
ˆ B H M = ˆ C K M ( = 90 o − g t )
BHM^=CKM^(=90o−gt)
B M = M C ( g t ) BM=MC(gt) ˆ H M B = ˆ K M C HMB^=KMC^ (đối đỉnh)
=> Δ B H M = Δ C K M ΔBHM=ΔCKM (cạnh huyền - góc nhọn)
=> ˆ H B M = ˆ K C M HBM^=KCM^ (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> BH // KC ( đ p c m ) BH // KC(đpcm)
Và từ Δ B H M = Δ C K M ΔBHM=ΔCKM (cmt)
=> B H = C K BH=CK (2 cạnh tương ứng)
b) Xét Δ H M C ; Δ K M B ΔHMC;ΔKMB có :
B M = M C ( g t )
BM=MC(gt) ˆ H M C = ˆ K M B HMC^=KMB^ (đối đỉnh)
H M = M K HM=MK (do Δ B H M = Δ C K M ΔBHM=ΔCKM -cmt)
=> Δ H M C ; Δ K M B ΔHMC;ΔKMB
=> Δ H M C = Δ K M B ΔHMC=ΔKMB (c.g.c)
=> ˆ H C M = ˆ K B M HCM^=KBM^ (2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> BK // CH ( đ p c m ) BK // CH (đpcm)
Có : Δ H M C = Δ K M B ΔHMC=ΔKMB (cmt)
=> B K = C H BK=CH (2 cạnh tương ứng)
c) Ta có : { H F = F C B E = E K {HF=FCBE=EK (gt)
Mà : B K = H C ( c m t ) BK=HC(cmt)
=> H F = F C = B E = E K HF=FC=BE=EK
Xét Δ B E M ; Δ F C M ΔBEM;ΔFCM có :
B M = M C ( g t ) BM=MC(gt) ˆ M B E = ˆ M C F ( s l t )
MBE^=MCF^(slt) B E = F C ( c m t ) BE=FC(cmt)
=> Δ B E M = Δ F C M ( c . g . c ) ΔBEM=ΔFCM(c.g.c)
=> E M = F M EM=FM(2 cạnh tương ứng)
=> M Là trung điểm của EF Do đó : E, ,M, F thẳng hàng
a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có
BM = MC ( M là t/điểm của BC)
góc cmk = góc bmh ( đối đỉnh)
=> t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )
=> góc H = góc K mà chúng ở vị trí slt => BH // KC
=> BH = CK ( 2 cạnh tuowg ứng)
b) tương tự câu a
a)
+)Có \(\hept{\begin{cases}AM\perp BH\left(gt\right)\\CK\perp AM\left(gt\right)\end{cases}\Rightarrow}\)BH//CK
+) Xét \(\Delta BHM;\Delta CKM\)có: \(\hept{\begin{cases}\widehat{BHM}=\widehat{CKM}\left(=90^o\right)\\MC=BM\left(gt\right)\\\widehat{HMB}=\widehat{KMC}\left(đ^2\right)\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\Rightarrow BH=CK}\)
b)
Xét ΔHMC;ΔKMB có:
BM=MC(gt)
^HMC=^KMB (đối đỉnh)
HM=MK(do ΔBHM=ΔCKM)
=> ΔHMC=ΔKMB(cgc)
=> ^HCM=^KBM(2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> BK // CH (đpcm)
Có : ΔHMC=ΔKMB(cmt)
=> BK=CH(2 cạnh tương ứng)
c) Ta có: \(\hept{\begin{cases}HF=FC\\BE=EK\end{cases}\left(gt\right)}\)
Mà BK=HC (cmt) => HF=FC =BE=EK
Xét \(\Delta BEM;\Delta FCM:\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{MBE}=\widehat{MCF}\left(slt\right)\\BE=FC\left(cmt\right)\end{cases}\Rightarrow\Delta BEM=\Delta FCM\left(cgc\right)}\)
=> EM=FM (2 cạnh tương ứng)
=> M Là trung điểm của EF
Do đó : E, ,M, F thẳng hàng
Nguồn: nguyen thi vang (h.vn)
Bạn bổ sung trên hình điểm E và F nhé. Mình quên chưa thêm
a) Xét tam giác HBM và tam giác KCM ,có :
MB = MC ( M là trung điểm của BC )
góc M1 = góc M2 ( đối đỉnh )
góc BHM = góc CKM ( = 90 độ )
=> tam giác HBM = tam giác KCM ( cạnh huyền - góc nhọn )
=> BH = CK ( hai cạnh tương ứng )
Vậy BH = CK
Vì góc góc BHM = góc CKM ( = 90 độ ) mà hai góc ở vị trí so le trong nên BH // CK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy BH // CK ; BH = CK ( đpcm )
b) Xét tam giác HMC và tam giác KMB , có :
góc M3 = góc M4 ( đối đỉnh )
MC = MB ( M là trung điểm của BC )
MH = MK ( tam giác HBM = tam giác KCM )
=> tam giác HMC = tam giác KMB ( c-g-c )
=> BK = CH ( hai cạnh tương ứng )
=> góc HCM = góc KBM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên BK // CH ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy BK = CH ; BK // CH ( đpcm )
c) Vì góc BMF + góc FMC = 180 độ ( hai góc kề bù ) mà góc FMC + góc CME = 180o ( hai góc kề bù ) => ba điểm E , M , F thẳng hàng
Vậy ba điểm E , M , F thẳng hàng
d) Bn tự làm nha!