Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Mình làm rồi nhé:
https://hoc24.vn/cau-hoi/cho-dabc-can-tai-a-co-bc-5cm-b-c-40-tinh-ab-va-duong-cao-ah.8311486416239
2) Xét tam giác vuông ABH ta có:
\(cosB=\dfrac{AH}{AB}\)
\(\Rightarrow cos60^o=\dfrac{5}{AB}\Rightarrow AB=\dfrac{5}{cos60^o}=10\)
Áp dụng định lý Py-ta-go vào tam giác này ta có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)
Mà: \(BH+CH=BC\)
\(\Rightarrow CH=BC-BH=10-5\sqrt{3}\approx1,3\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{CH^2+AH^2}=\sqrt{1,3^2+5^2}\approx5,2\)
A B C 6 4 H
Kẻ đường cao AH
Ta thấy :
\(\frac{BH}{AB}=cosB\Rightarrow BH=ABcosB=6cos60^o=3\left(cm\right)\)
\(\frac{AH}{AB}=sinB\Rightarrow AH=ABsinB=6sin60^o=3\sqrt{3}\left(cm\right)\)
\(CH=BC-BH=4-3=1\left(cm\right)\)
Áp dụng định lí Pitago cho tam giác vuông AHC
\(AC=\sqrt{AH^2+CH^2}=\sqrt{\left(3\sqrt{3}^2\right)+1^2}=2\sqrt{7}\left(cm\right)\)
Chúc bạn học tốt !!!
Gọi O là tâm đường tròn ngoại tiếp ΔABC
Gọi H là giao của AO với BC
AB=AC
OB=OC
Do đó: AO là trung trực của BC
=>AH là trung trực của BC
=>H là trung điểm của BC
HB=HC=4/2=2cm
Kẻ giao của AO với (O) là D
=>AD là đường kính của (O)
Xét (O) có
ΔABD nội tiếp
ADlà đường kính
Do đó: ΔBAD vuông tại B
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>\(AH^2=6^2-2^2=32\)
=>\(AH=4\sqrt{2}\left(cm\right)\)
Xét ΔBAD vuông tại B có BH là đường cao
nên AB^2=AH*AD
=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)
=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)
Lời giải:
Kẻ $BH\perp AC$ với $H\in AC$
$\frac{AH}{AB}=\cos A\Rightarrow AH=AB.\cos A$
$=4.\cos 60^0=2$ (cm)
$\frac{BH}{AB}=\sin A\Rightarrow BH=AB\sin A=4\sin 60^0=2\sqrt{3}$ (cm)
$CH=AC-AH=5-2=3$ (cm)
Áp dụng định lý Pitago:
$BC=\sqrt{BH^2+CH^2}=\sqrt{(2\sqrt{3})^2+3^2}=\sqrt{21}$ (cm)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
Kẻ BH vuông góc với AC tại H.
Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:
\(BH=sinA\cdot AB=sin60^0.4=2\sqrt{3}\left(cm\right)\)
\(AH=cosA.AB=cos60^0.4=2\left(cm\right)\)
Suy ra BH = 3(cm).
Áp dụng định lý Py-ta-go vào tam giác BHC vuông tại H, ta được:
\(BC=\sqrt{BH^2+CH^2}=\sqrt{12+9}=\sqrt{21}\left(cm\right)\)
Vậy BC = \(\sqrt{21}\)(cm)