Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc BEC=1/2*180=90 độ
góc BDC=1/2*180=90 độ
Xét ΔABC có
BD,CE là đường cao
DB cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
góc MDO=góc MDH+góc ODH
=góc MHD+góc DBC
=góc HBF+góc FHB=90 độ
=>DM là tiếp tuyến của (O)
a:
Sửa đề: Chứng minh bốn điểm A,D,H,E cùng nằm trên đường tròn
Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>Tâm O là trung điểm của AH
b: Gọi giao điểm của AH với BC là M
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
OD=OH
=>ΔODH cân tại O
=>\(\widehat{ODH}=\widehat{OHD}\)
mà \(\widehat{OHD}=\widehat{BHM}\)(hai góc đối đỉnh)
và \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{DBC}\right)\)
nên \(\widehat{ODH}=\widehat{DCB}\)
ΔDBC vuông tại D có DI là đường trung tuyến
nên DI=IB=IC=BC/2
IB=ID
=>ΔIDB cân tại I
=>\(\widehat{IBD}=\widehat{IDB}\)
\(\widehat{ODI}=\widehat{ODB}+\widehat{IDB}\)
\(=\widehat{IBD}+\widehat{DCB}=90^0\)
=>DI là tiếp tuyến của (O)
Do ^AEH=^ADH=90o nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.
Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH ⊥ BC.
Suy ra ^DAH=^DBC (vì cùng phụ với góc ^DCB).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I. Vì vậy ^IDB=^DBI.
Từ đó suy ra: ^HAD=^HBI=^BDI hay ^HAD=^HDI.
Gọi J là trung điểm AH. Ta có ^HAD=^JDA⇒^JDA=^HDI.
Vậy nên ^JDI=^HDI+^JDH=^JDA+^FDH=^ADH=90o.
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.
Do nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.
Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH BC.
Suy ra (vì cùng phụ với góc ).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I. Vì vậy .
Từ đó suy ra: hay .
Gọi J là trung điểm AH. Ta có .
Vậy nên .
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a, Vì \(\widehat{BMC}=\widehat{BNC}=90^0\) (góc nt chắn nửa đg tròn) nên BN,CM là đường cao tam giác ABC
Do đó H là trực tâm tam giác ABC
Vậy AH là đường cao thứ 3 hay AH⊥BC tại D
b, \(OC=ON\Rightarrow\widehat{ONC}=\widehat{OCN}\)
Mà NE là trung tuyến ứng cạnh huyền tg AHN nên \(NE=EH\)
\(\Rightarrow\widehat{ANE}=\widehat{EAN}\)
\(\Rightarrow\widehat{ANE}+\widehat{ONC}=\widehat{OCN}+\widehat{EAN}=90^0\left(\Delta ADC\perp D\right)\\ \Rightarrow\widehat{ENO}=180^0-\left(\widehat{ANE}+\widehat{ONC}\right)=90^0\\ \Rightarrow EN\perp ON\left(đpcm\right)\)