Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Sai đề: \(sin^2\dfrac{A}{2}+sin^2\dfrac{B}{2}+sin^2\dfrac{C}{2}=1-2sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\)
\(sin^2\dfrac{A}{2}+sin^2\dfrac{B}{2}+sin^2\dfrac{C}{2}\)
\(=1-\dfrac{cosA+cosB}{2}+sin^2\dfrac{C}{2}\)
\(=1-cos\dfrac{A+B}{2}.cos\dfrac{A-B}{2}+sin\dfrac{C}{2}.cos\dfrac{A+B}{2}\)
\(=1-sin\dfrac{C}{2}.cos\dfrac{A-B}{2}+sin\dfrac{C}{2}.cos\dfrac{A+B}{2}\)
\(=1+sin\dfrac{C}{2}\left(cos\dfrac{A+B}{2}-cos\dfrac{A-B}{2}\right)\)
\(=1-2sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\)
Vì A+B+C=180^{\circ}A+B+C=180∘ nên V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB.
V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB =\dfrac{\sin ^{3} \dfrac{B}{2}}{\sin \dfrac{B}{2}}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\cos \dfrac{B}{2}}-\dfrac{-\cos B}{\sin B} \cdot \tan B=\sin ^{2} \dfrac{B}{2}+\cos ^{2} \dfrac{B}{2}+1=2=V P=sin2Bsin32B+cos2Bcos32B−sinB−cosB⋅tanB=sin22B+cos22B+1=2=VP
Suy ra điều phải chứng minh.
- Áp dụng định lý sin ta được :
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow\left\{{}\begin{matrix}sinC=\dfrac{c}{2R}\\sinB=\dfrac{b}{2R}\\sinA=\dfrac{a}{2R}\end{matrix}\right.\)
VT = \(\dfrac{a^2}{2R}+\dfrac{b^2}{2R}+\dfrac{c^2}{2R}=\dfrac{a^2+b^2+c^2}{2R}\)
Lại có \(\left\{{}\begin{matrix}m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\\....\end{matrix}\right.\)
\(\Rightarrow VP=\dfrac{b^2+c^2+c^2+a^2+a^2+b^2-\dfrac{a^2}{2}-\dfrac{b^2}{2}-\dfrac{c^2}{2}}{3R}\)
\(=\dfrac{\dfrac{3}{2}\left(a^2+b^2+c^2\right)}{3R}=\dfrac{a^2+b^2+c^2}{2R}=VT\)
=> ĐPCM