Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAI vuông tại A và ΔCHi vuông tại H có
CI chung
góc ACI=góc HCI
=>ΔCAI=ΔCHI
=>IA=IH
b: IA=IH
IH<IB
=>IA<IB
c: Xét ΔCAB có
K là giao điểm của hai tia phân giác góc ngoài tại đỉnh A,B
=>CK là phân giác của góc ACB
=>C,I,K thẳng hàng
1: Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCDB cân tại C
mà CA là đường trung tuyến
nên CA là tia phân giác của góc BCD
2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
\(\widehat{ECI}=\widehat{FCI}\)
Do đó:ΔCEI=ΔCFI
Suy ra: CE=CF
hay ΔCEF cân tại C
Xét ΔCDB có
CE/CD=CF/CB
nên EF//DB
3: Ta có: ΔCEI=ΔCFI
nên IE=IF
mà IF<IB
nên IE<IB
4: Xét ΔCDB có
CA là đường cao
BE là đường cao
CA cắt BE tại I
Do đó: I là trực tâm của ΔCDB
=>DI⊥CB
mà IF⊥CB
nên DI,FI có điểm chung là I
nên D,I,F thẳng hàng
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
hay \(\widehat{EBI}=\widehat{DCI}\)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC(cmt)
\(\widehat{EBI}=\widehat{DCI}\)(cmt)
Do đó: ΔEBI=ΔDCI(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
a) Xét tam giác ADB và tam giác AEC có:
AB=AC (gt)
A là góc chung
góc E = góc D =90 độ
=> tam giác ADB= tam giác AEC ( cạnh huyền góc nhọn)
=> AE = AD ( 2 cạnh tương ứng)
=> tam giác ADE cân tại A
b) Ta có: tam giác ADE can tại A ( cmt)
góc E1 = góc D1= 180 độ - góc A : 2 ( góc A + góc D1 + góc E1 = 180 độ)
góc B= góc C= 180 độ - góc A : 2 ( gt)
=> góc E1= góc B ( 2 góc tương ứng)
Mà góc E1 = góc B ( 2 góc tương ứng)
=> DE//BC
c) Ta có: EB= AB - AE
DC= AC - AD
mà AB = AC (gt)
AE = AD ( cma)
=> EB=DC
xét tam giác EIB và tam giác DIC có:
góc E = góc D= 90 độ ( gt)
góc B1 = góc C1 ( tam giác AEC = tam giác ADB)
EB = DC ( cmt)
=> tam giác EIB = tam giác DIC ( g.c.g)
=> IB - IC ( 2 cạnh tương ứng)
a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC
góc B=góc C
=>ΔIBH=ΔICK
b: ΔABC cân tại A
mà AI là đường cao
nên AI là phân giác
c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
HI=KI
=>ΔAHI=ΔAKI
=>AH=AK
d: IK=IH
IH<IB
=>IK<IB