Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD=10cm
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=goc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
1: Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCDB cân tại C
mà CA là đường trung tuyến
nên CA là tia phân giác của góc BCD
2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
\(\widehat{ECI}=\widehat{FCI}\)
Do đó:ΔCEI=ΔCFI
Suy ra: CE=CF
hay ΔCEF cân tại C
Xét ΔCDB có
CE/CD=CF/CB
nên EF//DB
3: Ta có: ΔCEI=ΔCFI
nên IE=IF
mà IF<IB
nên IE<IB
4: Xét ΔCDB có
CA là đường cao
BE là đường cao
CA cắt BE tại I
Do đó: I là trực tâm của ΔCDB
=>DI⊥CB
mà IF⊥CB
nên DI,FI có điểm chung là I
nên D,I,F thẳng hàng
1: Xét ΔABE vuông tại E và ΔACD vuông tại D có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACD
2: Ta có: ΔABE=ΔACD
=>\(\widehat{ABE}=\widehat{ACD}\)
Ta có: \(\widehat{ABE}+\widehat{EBC}=\widehat{ABC}\)
\(\widehat{ACD}+\widehat{DCB}=\widehat{ACB}\)
mà \(\widehat{ABE}=\widehat{ACD};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
3: Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
Ta có: ΔABH vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB^2-AH^2=BH^2\left(1\right)\)
Ta có: ΔIHB vuông tại H
=>\(HI^2+HB^2=BI^2\)
=>\(HB^2=BI^2-HI^2\left(2\right)\)
Từ (1),(2) suy ra \(AB^2-AH^2=BI^2-HI^2\)
=>\(AB^2+HI^2=BI^2+AH^2\)
a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)
nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)
Xét ΔADC vuông tại A và ΔAEB vuông tại A có
AC=AB(ΔABC vuông cân tại A)
\(\widehat{ACD}=\widehat{ABE}\)(cmt)
Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)
Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)
Xét tam giác AEC= tam giác ADB(g-c-g)
suy ra AE=AD từ đó BE=DC
a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
\(\widehat{ABE}=\widehat{ACD}\)
\(\Rightarrow\Delta ABE=\Delta ACD\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BE=CD;AE=AD\)
b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.
Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)
Từ đó suy ra tam giác AMC vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)
\(\Rightarrow HK=AD\)
Mà AD = AE nên HK = AE. (1)
Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)
\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)
Suy ra AG là phân giác góc IAE.
Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)
\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)
Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
DO đó: ΔAEB=ΔAFC
b: ta có; ΔAEB=ΔAFC
=>AE=AF
Xét ΔAFI vuông tại F và ΔAEI vuông tại E có
AI chung
AF=AE
Do đó: ΔAFI=ΔAEI
=>\(\widehat{FAI}=\widehat{EAI}\)
=>AI là phân giác của góc BAC
c: Xét ΔABC có \(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)(Do AF=AE;AB=AC)
nên FE//BC
a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC vuông cân tại A)
nên \(\widehat{ABE}=\widehat{ACD}\)
Xét ΔABE vuông tại A và ΔACD vuông tại A có
AB=AC(ΔABC vuông cân tại A)
\(\widehat{ABE}=\widehat{ACD}\)(cmt)
Do đó: ΔABE=ΔACD(cạnh góc vuông-góc nhọn kề)
Suy ra: BE=CD(Hai cạnh tương ứng) và AE=AD(Hai cạnh tương ứng)
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a: Xét ΔABE vuông tại E và ΔACD vuông tại D có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACD
b: \(CD=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: Ta có: ΔABE=ΔACD
nên AE=AD
d: Xét ΔDBC vuông tại D và ΔECB vuông tại E có
BC chung
DC=BE
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔBIC cân tại I