K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

cảm ơn bạn nhiều

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:

$\widehat{HEA}=\widehat{HDB}=90^0$

$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)

$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)

b) Xét tam giác $CKD$ và $CDA$ có:

$\widehat{C}$ chung

$\widehat{CKD}=\widehat{CDA}=90^0$ 

$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)

$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)

c) Xét tam giác $ADK$ và $DCK$ có:

$\widehat{AKD}=\widehat{DKC}=90^0$

$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)

$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$

$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$

Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:

$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)

$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \frac{DFK}=\widehat{CDN}$

$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$

$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$

$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.

 

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Hình vẽ:

undefined

a: Xét ΔDBE và ΔDMA có

góc DBE=góc DMA

góc BDE=góc MDA
=>ΔDBE đồng dạng vơi ΔDMA

=>BE/MA=DB/DM=1/3

=>BE=1/3MA=1/3*1/2AC=1/6AC

b: BE//AC

=>BK/KC=BE/AC=1/4

=>BK/BC=1/5

 

26 tháng 3 2023

câu c nx bạn ơi, cứu mik

15 tháng 3 2017

bạn nào giỏi hình làm giúp với 

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔADM có

AE là đường cao

AE là đường trung tuyến

Do đó: ΔADM cân tại A

=>AD=AM

ΔADM cân tại A

mà AE là đường cao

nên AE là phân giác của \(\widehat{DAM}\left(1\right)\)

Xét ΔADN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔADN cân tại A

=>AD=AN

ΔADN cân tại A

mà AF là đường cao

nên AF là phân giác của \(\widehat{DAN}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)

\(=2\left(\widehat{EAD}+\widehat{FAD}\right)\)

\(=2\cdot\widehat{FAE}=2\cdot90^0=180^0\)

=>M,A,N thẳng hàng(3)

AM=AD

AN=AD

Do đó: AM=AN(4)

Từ (3) và (4) suy ra A là trung điểm của MN

c: Xét ΔADB và ΔAMB có

AD=AM

\(\widehat{DAB}=\widehat{MAB}\)

AB chung

Do đó: ΔADB=ΔAMB

=>\(\widehat{AMB}=\widehat{ADB}=90^0\)

=>BM\(\perp\)MN(5)

Xét ΔADC và ΔANC có

AD=AN

\(\widehat{DAC}=\widehat{NAC}\)

AC chung

Do đó: ΔADC=ΔANC

=>\(\widehat{ANC}=\widehat{ADC}=90^0\)

=>CN\(\perp\)NM(6)

Từ (5) và (6) suy ra BM//CN

Xét tứ giác BMNC có

BM//CN

BM\(\perp\)MN

Do đó: BMNC là hình thang vuông

21 tháng 8 2016

chỉ cần làm câu d thôi