Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A=B thì
4x3-3xy+x+2=3x3-3xy+3x-3
<=>x3-2x+5=0
Đề sai nè bấm máy tìm đc 1 giá trị của x
Chia làm 3 khoảng để xét.
Khoảng thứ nhất:\(x< 0\)
Khi đó:\(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)
\(=x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1\)
Do \(x< 0\Rightarrow\hept{\begin{cases}x^5< 0\\x-1< 0\end{cases}}\Rightarrow x^5\left(x-1\right)>0\)
Tương tự ta có:\(\hept{\begin{cases}x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\)
Khi đó \(x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)
Khoảng thứ 2:\(0< x< 1\)
Khi đó \(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)
\(=x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)\)
Do \(0< x< 1\Rightarrow x-1< 0\Rightarrow\hept{\begin{cases}x^4\left(x-1\right)< 0\\x^2\left(x-1\right)< 0\\x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x^4\left(x-1\right)>0\\x^2\left(x-1\right)>0\\-\left(x-1\right)>0\end{cases}}\)
\(\Rightarrow x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)>0\) vì \(x^6>0\)
Khoảng thứ 3:\(1< x\)
Khi đó:\(\hept{\begin{cases}x^5\left(x-1\right)>0\\x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\Rightarrow x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)
Xét \(x=0\Rightarrow f\left(x\right)=1>0\)
Xét \(x=1\Rightarrow f\left(x\right)=1-1+1-1+1-1+1=1>0\)
\(\Rightarrowđpcm\)
a) -x2+2x-5 = -( x2-2x+5) = - (x2-2x+1+4) = - (x-1)2 -4
Do - (x-1)2 bé hơn hoặc bằng 0 => (x-1)2- 4 <0 => -x2+2x-5 luôn đạt giá trị âm