\(\dfrac{1}{6}\)xy2+\(\dfrac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(Q=-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1\)

\(A=x^2y-3x+1-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{2}x^2y-\dfrac{7}{12}xy^2-3x\)

b: \(P=\dfrac{3}{4}xy^2+\dfrac{4}{9}x-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{6}xy^2+\dfrac{16}{9}x-\dfrac{1}{2}x^2y-1\)

12 tháng 5 2022

Cảm ơn ạ

1 tháng 5 2017

a,=2*4-1/3*9

=8-3

=5

b,=1/2*4-3*1/9

=2-1/3

=4/3

c,=2*1/4+3*-1/2*2/3+4/9

=1/2-1+4/9

=-1/18

d,=(-1/2*2*1/16)*(2/3*8)

=-1/16*16/3

=-1/3

Chúc bạn học giỏi

23 tháng 6 2018

1,

\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)

2,

\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)

3, Làm tương tự câu 2

5,

\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)

6,

\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)

7,

\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)

9,

23 tháng 6 2018

lê thị hồng vân trả lời típ đikhocroi

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

26 tháng 3 2018

Ko ghi đề nha!

*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)

\(=-a^5b^2\) Bậc là 5+2=7

+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)

\(=4x^3y^2z^4\) Bậc là 3+2+4=9

* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)

\(=-3x^3y^3z^4\) Bậc là 3+3+4=10

b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)

\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11

Chào người bạn cũok

26 tháng 3 2018

Ai giúp với

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

16 tháng 10 2022

a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)

=>4^x=4^8

=>x=8

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

=>2^x=2^11

=>x=11

c: =>1/6*6^x+6^x*36=6^15(1+6^3)

=>6^x=6*6^15

=>x=16

d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)

=>x=9

20 tháng 9 2018

1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx

2,

a,x=\(\dfrac{-1.12}{4}\)

x=\(\dfrac{-12}{4}=-3\)

b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow\)2x-1=5

2x=6

x=6:2=3

c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)

\(\dfrac{4}{7}.x=\dfrac{13}{15}\)

\(x=\dfrac{13}{15}:\dfrac{4}{7}\)

x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)

3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)

2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)

vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)

20 tháng 9 2018

1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)

2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-\dfrac{12}{4}=-3\)

Vậy x = -3

\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)

\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow2x-1=5\)

\(\Rightarrow x=\dfrac{5-1}{2}=2\)

Vậy x = 2

\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)

\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}x=\dfrac{13}{15}\)

\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)

Vậy \(x=1\dfrac{31}{60}\)

3) So sánh \(5^{202}\)\(2^{505}\)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

\(\Rightarrow25^{101}< 32^{101}\)

\(\Rightarrow5^{202}< 2^{505}\)

a: \(=\left(\dfrac{-1}{3}:\dfrac{-2}{3}\right)^3+\left(\dfrac{4}{21}\cdot\dfrac{21}{4}\right)^{50}+0.01\)

\(=\left(\dfrac{1}{2}\right)^3+1^{50}+0.01=0.125+1+0.01=1.135\)

b: \(=x:y+\left(\dfrac{2x}{y}\right)^2-11x+12x-12y\)

\(=\dfrac{x}{y}+\dfrac{4x^2}{y^2}+x-12y\)

\(=\dfrac{x^2+4x^2+xy^2-12y^3}{y^2}=\dfrac{5x^2+xy^2-12y^3}{y^2}\)