Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b: \(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
a) Q(x)=\(-5x^6\)\(+2x^4\)\(+4x^3\)\(-4x-1\)
b) Giống câu a mà bạn . Chúc bạn học giỏi
Giải:
a) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
b) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
c) Các hệ số của Q(x) là: 9; 1; 3; 6; 8.
d) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
\(\Leftrightarrow Q\left(x\right)=8x^3-2x^2+2\)
Suy ra:
\(Q\left(-4\right)=8\left(-4\right)^3-2\left(-4\right)^2+2\)
\(\Leftrightarrow Q\left(-4\right)=-512-32+2\)
\(\Leftrightarrow Q\left(-4\right)=-542\)
Ta có:
\(Q\left(3\right)=8.3^3-2.3^2+2\)
\(\Leftrightarrow Q\left(3\right)=216-18+2\)
\(\Leftrightarrow Q\left(3\right)=200\)
Vậy ...
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
a: \(P\left(x\right)=5x^5-4x^4+2x^2+3x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2+x+\dfrac{1}{4}\)
b: \(P\left(x\right)+Q\left(x\right)=4x^5-2x^4-2x^3+5x^2+4x+\dfrac{25}{4}\)
a) Sắp xếp các hạng tử của Q(x) theo lũy thừa giảm dần của biến:
\(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b) Viết đa thức Q(x) đầy đủ từ lũy thừa bậc cao nhất đến lũy thừa bậc 0:
\(Q\left(x\right)=-5x^6+0x^5+2x^4+4x^3+0x^2-4x-1\)
a)
Sắp xếp các hạng tử của Q(x) theo lũy thừa giảm của biến là:
\(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b) Câu này giống với câu a nhé!
\(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\) Chúc bạn học tốt!