K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 4 2021
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
25 tháng 4 2021
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm
22 tháng 2 2019
Ta có:
\(f\left(0\right)=c\in Z\)(1)
\(f\left(1\right)=a+b+c\in Z\)(2)
\(f\left(2\right)=4a+2b+c\in Z\)(3)_
Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)
Từ (1), (3)=> 4a+2b\(\in Z\)(5)
Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)
=> \(2a\in Z\)=> \(2b\in Z\)
\(P\left(0\right)=c\)mà P(0) là số nguyên
\(\Rightarrow c\)là số nguyên
Ta có: \(P\left(1\right)=a+b+c\)mà P(1) là số nguyên và c là số nguyên
\(\Rightarrow a+b\)nguyên
\(\Rightarrow2a+2b\left(1\right)\)nguyên
Lại có: \(P\left(2\right)=4a+2b\left(2\right)\)là số nguyên
Từ (1) và (2) \(\Rightarrow2a\)là số nguyên
\(\Rightarrow a\)là số nguyên
Mà \(P\left(1\right)=a+b+c\), a,c là số nguyên nên b là số nguyên
\(\Rightarrow P\left(x\right)=ax^2+bx+c\)có giá trị nguyên với mọi x nguyên
P(0) là số nguyên \(\Rightarrow a.0^2+b.0+c=c\inℤ\)
\(\Rightarrow c\inℤ\)
P(1) là số nguyên \(\Rightarrow a.1^2+b.1+c=a+b+c\inℤ\)\(\Rightarrow a+b\inℤ\)\(\Rightarrow2a+2b\inℤ\)(1)
P(2) là số nguyên \(\Rightarrow a.2^2+b.2+c=4a+2b+c\inℤ\)\(\Rightarrow4a+2b\inℤ\)(2)
Trừ (2) cho (1) ta được \(\left(4a+2b\right)-\left(2a+2b\right)=2a\inℤ\)\(\Rightarrow a\inℤ\)
\(\Rightarrow b\inℤ\)\(\Rightarrow a,b,c\inℤ\)
mà x nguyên \(\Rightarrow\)P(x) có giá trị nguyên với mọi x nguyên ( đpcm)