K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(Q\left(x\right)=P\left(x\right)-H\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=1+x+2x^2+...+2015x^{2015}-x^{2015}-x^{2014}-...-x^2-x-1\)

\(\Leftrightarrow H\left(x\right)=2014x^{2015}+2013x^{2014}+2012x^{2013}+...+x^2\)

6 tháng 7 2017

f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1

f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1

Với x=2017 ta có :

f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1

f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1

f(x)= x + 1

Thay x =2017 vào f(x) ta có :

f(2017) = 2017 +1 = 2018

18 tháng 4 2018

\(^{P\left(x\right)=x^{2018}-100x^{2017}+100x^{2016}-...+100x+2016}\) \(^{P\left(99\right)=x^{2018}-\left(99+1\right)x^{2017}+\left(99+1\right)x^{2016}-...+\left(99+1\right)x+2016}\) \(^{P\left(99\right)=x^{2018}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...+x^2+x+2016}\) \(^{P\left(99\right)=x+2016=99+2016=2115}\)

26 tháng 3 2018

Với x = 0, ta có:

02016. f(0-2016) = (0 - 2017) . f(0)

=> 0. f(-2016) = - 2017. f(0)

=> 0 = - 2017. f(0) => f(0) = 0 (1)

Với x = 2017, ta có: 

20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)

=> 20172016 . f(1) = 0. f(2017)

=>20172016 . f(1) = 0 => f(1) = 0 (2)

(1), (2) => (đpcm)

24 tháng 4 2017
Đặt g(x)=f(x)-x-1 vì f(x) bậc 3 nên g(x) cũng bậc ba. Ta có g(2015)=g(2016)=0 Nên g(x)=(x-2015)(x-2016)(ax+b) suy ra f(x)=(x-2015)(x-2016)+x+1. Từ điều kiện f(2014)-f(2017)=3 suy ra a=-1, b tùy ý
DD
6 tháng 2 2021

\(f\left(1\right)=a_{2017}+a_{2016}+...+a_3+a_2+a_1+a_0\)

\(f\left(-1\right)=-a_{2017}+a_{2016}+...-a_3+a_2-a_1+a_0\)

\(f\left(1\right)+f\left(-1\right)=2\left(a_{2016}+a_{2014}+...+a_2+a_0\right)\)

\(S=\frac{f\left(1\right)+f\left(-1\right)}{2}=\frac{3^{2017}+1}{2}\)

23 tháng 11 2017

Giúp mk với mọi người