Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
5x4 - x6 = 0
=> x4(5-x2) = 0
<=> x = 0 hoặc 5 = x2
<=> x = 0 hoặc x = \(\pm\sqrt{5}\)
\(5x^4-x^6=0\)
\(\Leftrightarrow x^4\left(5-x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^4=0\\5-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
CM đa thức k có nghiệm:
a) x^2 + +5x + 8
Vì x^2 + +5x >hc = 0 với mọi x
=> x^2 + +5x + 8 > 0 với mọi x
Vậy đa thức x^2 + +5x + 8 k có nghiệm
các câu sau bn lm tương tự vậy nha
Cho f(x) = 0
=> ( x -2 ).( x+3) = 0
=> x -2 = 0 => x= 2
x + 3 = 0 => x = - 3
=> x =2 , x = -3 là nghiệm của f(x)
mà nghiệm của f(x) cũng là nghiệm của g(x)
=> x = 2; x = -3 là nghiệm của g(x)
ta có: x = 2 là nghiệm của g(x)
=> 2^3 + a. 2^2 + b. 2 + 2 = 0
8 + 4a + 2b + 2 = 0
2.( 4 + 2a + b + 1) =0
=> 4 + 2a + b + 1 = 0
2a + b + 5 = 0
b = -5 - 2a
ta có: x = -3 là nghiệm của g(x)
=> (-3)^3 + a . ( -3)^2 + b.(-3) + 2 = 0
- 27 + 9a - 3b + 2 = 0
- 25 + 9a - 3.( -5 - 2a) = 0
- 25 + 9a + 15 + 6a = 0
-10 + 15 a = 0
15a = 10
a = 10 / 15
a = 2/3
mà b = -5 - 2a
b = -5 - 2. 2/3
b = - 5 - 4/ 3
b = -19/3
KL: a = 2/3, b = -19/3
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
Để x là nghiệm của đa thức P(x)
\(\Leftrightarrow P\left(x\right)=0\)
\(\Rightarrow x^2+4x+3=0\)
\(\Rightarrow x^2+2x+2x+3=0\)
\(\Rightarrow x\times\left(x+2\right)\times2x+4-1=0\)
\(\Rightarrow x\times\left(x+2\right)\times2\times\left(x+2\right)-1=0\)
\(\Rightarrow\left(x+2\right)^2=1\)
\(\Rightarrow x=-1hayx=-3\)
\(P\left(x\right)=x^2+4x+3\)
Ta có: \(P\left(x\right)=x^2+4x+3\)
\(P\left(x\right)=x^2+x+3x+3\)
\(P\left(x\right)=x.\left(x+1\right)+3.\left(x+1\right)\)
\(P\left(x\right)=\left(x+1\right).\left(x+3\right)\)
Ta có: P(x)=0 thì \(\left(x+1\right).\left(x+3\right)=0\)
\(\Leftrightarrow x+1=0\) hoặc \(x+3=0\)
\(\Leftrightarrow x=-1\) hoặc \(x=-3\)
Vậy \(x\in\left\{-1;-3\right\}\) là nghiệm của đa thức P(x)
Chúc bạn học tốt!!!