K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có \(a-b|P\left(a\right)-P\left(b\right).màP\left(b\right)=-1\) nên suy ra \(\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

tương tự ta cũng được \(\left[{}\begin{matrix}c-b=1\\c-b=-1\end{matrix}\right.\) rõ ràng a≠c(do P(a)≠P(a)) nên a-b≠c-b

từ đây ta được

\(\left[{}\begin{matrix}a-b=1\\c-b=-1\end{matrix}\right.V\left[{}\begin{matrix}a-b=-1\\c-b=1\end{matrix}\right.\)

suy ra \(a+c=2b\) 

vậy ta được đpcm

27 tháng 8 2021

mk ko hiểu lắm bạn ơi

 

7 tháng 2 2021

- Gỉa sử a là nghiệm nguyên của P(X) .

- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)

- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)

Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)

\(154⋮̸3\)

Vậy đa thức P(x) không có nghiệm nguyên .

28 tháng 12 2017

Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây nhé.