K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

25 tháng 1 2017

mình chịu

10 tháng 8 2016

a, Tích của 2 số hữu tỉ 

\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)

b, Thương của 2 số hữu tỉ

\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)

c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm

\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)

d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5

\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)

 

 

 

25 tháng 3 2016

Cho f(x)=ax^2+bx+c với a,b,c là số hữu tỉ .Biết 13a+b+2c>0

Chứng Minh: trong 2 biểu thức f(-2);f(3) ít nhất có 1 biểu thức dương

hãy tích khi ko muốn tích nha các bạn 

đùa thui!!!

25 tháng 3 2016

tớ mún tích cho cậu nhưng cậu nói thế thì thui nha
 

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

15 tháng 8 2016

Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)

Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)

Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)

15 tháng 8 2016

Dạ cám ơn bạn

 

30 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

Ta có : \(f\left(-2\right)=4a-2b+c\)

          \(f\left(3\right)=9a+3b+c\)

\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                       \(=13a+b+c\)

                                       \(=0\)

\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)

\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)

\(\Rightarrow\) \(đpcm\)

Study well ! >_<

30 tháng 3 2019

tốt lắm bạn