K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

31 tháng 8 2017

Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)

Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0

              Dư của phép chia đa thức P(x) cho ax + b là P(-ba)

Quy trình bấm phím như sau:

1. Ghi vào màn hình: 6A3 -7A2 -16A

31 tháng 8 2017

cám ơn bạn nha!

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)

27 tháng 10 2021

p(x)=\(x^3+ã^2+bx+c\)

với x=1 thì p(1)=0 hay

\(1+a+b+c=0\)

p(x) \(chia\)p(x-2) dư 6

với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)

tương tự với cái còn lại

xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

18 tháng 12 2017

a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)

\(\Rightarrow a-b+c-d=2\)

\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)

\(\Rightarrow a+b+c+d=34\)

\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)

\(P\left(2\right)=32-16a+8b-4c+2d-2010\)

\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)

\(=-12a-4.18+2.16+6b-1978\)

\(=-12a+6b-2018=-2084\)

\(\Rightarrow2a-b=11\)

\(P\left(3\right)=243-81a+27b-9c+3d-2010\)

\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)

\(=243-72a+24b-9.18+3.16-2010=-2385\)

\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)

Từ đó ta có  \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)

Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)