K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

Dễ mà bạn!

a)

M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3

M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1

M(x)= x^4+2x^2+1

b)

M(x)= x^4+2x^2+1

M(1)= 1^4+2.1^2+1

M(1)= 1+2+1

M(1)= 4

 

M(-1)= (-1)^4+2.(-1)^2+1

M(-1)= 1+2+1

M(-1)= 4

c) Vì x^4+2x^2+1 >= 1

Nên M(x)= x^4+2x^2+1 không có nghiệm

15 tháng 6 2020

* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

        = ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1 

        = x4 + 2x2 + 1

* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4

  M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4

* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)

=> M(x) vô nghiệm 

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn

3 tháng 5 2023

a,

 \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(-3x+3x\right)+\left(\dfrac{2}{3}+1\right)\\ =3x^4+0+2x^2+0+\dfrac{5}{3}\\ =3x^4+2x^2+\dfrac{5}{3}\)

b, Ta có

\(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\\ \Rightarrow3x^4+2x^2\ge0\\ \Rightarrow3x^4+2x^2+\dfrac{5}{3}\ge\dfrac{5}{3}>0\)

\(\Rightarrow Q\left(x\right)\) lớn hẳn hơn 0

\(\Rightarrow Q\left(x\right)\) vô nghiệm 

28 tháng 3 2018

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

a: f(x)=-2x^7+4x^3-2x^2+3

g(x)=-5x^7-2x^3+x

b: f(x)+g(x)

=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x

=-7x^7+2x^3-2x^2+x+3

f(x)-g(x)

=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x

=3x^7+6x^3-2x^2-x+3

c: f(0)=0+0+0+3=3

=>x=0 ko là nghiệm của f(x)

g(0)=0+0+0=0

=>x=0 là nghiệm của g(x)

30 tháng 4 2023

\(a,Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(3x-3x\right)+1\\ =3x^4+2x^2+1\\ b,Q\left(x\right)=0\\ \Leftrightarrow3x^4+2x^2+1=0\\ \Delta=b^2-4ac=2^2-4.3.1=-8< 0\)

Vậy Q(x) không có nghiệm

a: A(x)=2x^3+x^2+4x+1

B(x)=-2x^3+x^2+3x+2

b: M(x)=A(x)+B(x)

=2x^3+x^2+4x+1-2x^3+x^2+3x+2

=2x^2+7x+3

c: M(x)=0

=>2x^2+7x+3=0

=>2x^2+6x+x+3=0

=>(x+3)(2x+1)=0

=>x=-3 hoặc x=-1/2

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm