Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)
\(=2y^2+4y-x^2-7x+2\)
Thay `x = 2` và `y = -1` vào `A + B` ta được:
\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)
b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)
\(=3x^2+3x-4y^2+2y-4\)
Thay `x = -2` và `y = 1` vào `A - B` ta được:
\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)
a) tự tính nhé dễ mà
b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2
= 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy + y2 + 5 - 7
= 7xyz - 2x2 + y2 - 2
M - N và N - M làm tương tự nhé
Để tổng của M với đa thức \(x^2-2xy+y^2-2xy+z^2\) không chứa x thì \(M+x^2-2xy+y^2-2xy+z^2=y^2-z^2\)
=>\(M+x^2-4xy=0\)
=>\(M=-x^2+4xy\)
a: M=P-Q
=5x^2-7y^2+y-1-x^2+2y^2
=4x^2-5y^2+y-1
b: Khi x=1/2 và y=-1/5 thì
M=4*1/4-5*1/25-1/5-1
=1-1-1/5-1/5=-2/5
a) Tại \(x=1;y=2;z=-1\) ta có:
\(M=1^3-5.1^2.2+3.2^2-6.1.\left(-1\right)+2.\left(-1\right)^2-1-\left(-1\right)^3\)
\(M=1-5.1.2+3.4-6.1\left(-1\right)+2.1-1-\left(-1\right)\)
\(M=1-10+12-\left(-6\right)+2-1-\left(-1\right)=11\)
Vậy tại \(x=1;y=2;z=-1\) vào biểu thức M là 11