Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5
=> 0+0+0+d chia hết cho 5 => d chia hết 5
ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5
=> a+b+c+d chia hết 5
Mà d chia hết 5 => a+b+c chia hết 5 (1)
ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5
=> -a+b-c+d chia hết 5
Mà d chia hết 5 => -a+b-c chia hết 5 (2)
Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5
=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5
Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5
=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5 (3)
ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5
=> 8a+4b+2c+d chia hết 5
Mà b,d chia hết 5 => 8a+2c chia hết 5 (4)
Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5
=> c chia hết 5
Vậy...
Đúng thì k nha mina !!
Ừm đúng rồi.Cảm ơn bạn đã nhắc mk nhé.Ở đây mk cần xét thêm 1 trường hợp nữa là các số đó có tổng dư cũng chia hết cho 5. Cảm ơn bạn nhìu lắm nhé!!!!!
Mình làm theo cách của bài185 trong sách "Nâng cao và phát triển toán 7 tập 2"của tác giả Vũ Hữu Bình nhé :
Vì f(x) chia hết cho 5 với mọi x thuộc Z
=>f(0) = a.\(0^3\)+b.\(0^2\)+c.0+d = d chia hết cho 5 ('1')
=>f(1) = a.\(1^3\)+b.\(1^2\)+c.1+d = a+b+c+d chia hết cho 5 ('2')
=>f(-1) = a.\(\left(-1\right)^3\)+b.\(\left(-1\right)^2\)+c.(-1)+d = -a+b-c+d chia hết cho 5 ('3')
=>f(2) = a.\(2^3\)+b.\(2^2\)+c.2+d = 8a+4b+2c+d chia hết cho 5 ('4')
Lấy (2)-(1) = a+b+c+d-d = a+b+c chia hết cho 5 ('5')
Lấy(2)+(3)-(1) = a+b+c+d-a+b-c+d-d = 2b chia hết cho 5 mà 2 không chia hết cho 5 => b chia hết cho 5 ('6')
Lấy (3)-(1)-(6) = -a+b-c+d-d-b = -a-c chia hết cho 5 ('7')
Lấy ('4')-('1')-4.('6')+2.('7') = 8a+4b+2c+d-d-4b+2(-a-c) = 8a+2c+(-2a)+(-2c) = 6a chia hết cho 5 (vì mỗi số hạng đều chia hết cho 5 đã cm ở trên)
Mà 6 không chia hết cho 5 => a chia hết cho 5 ('8')
Lấy ('7')+('8') = -a-c+a = -c chia hết cho 5 => -1.(-c) = c chia hết cho 5 ('9')
Vậy từ ('1');('2');('8');('9') => f(x) chia hết cho 5 với mọi x thuộc Z thì các hệ số a;b;c;d cũng chia hết cho 5
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
f(0) ⋮ 7 => e ⋮ 7
=> g(x) = ax4 + bx3 + cx2 + dx ⋮ 7 ∀ x nguyên
g(1) = a + b + c + d ⋮ 7
g(-1) = a - b + c - d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(a+b+c+d\right)+\left(a-b+c-d\right)⋮7\\\left(a+b+c+d\right)-\left(a-b+c-d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2\left(a+c\right)⋮7\\2\left(b+d\right)⋮7\end{matrix}\right.\)
Mà 2 không chia hết cho 7 => \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) (1)
g(2) = 16a + 8b + 4c + 2d ⋮ 7
g(-2) = 16a - 8b + 4c - 2d ⋮ 7
=> \(\left\{{}\begin{matrix}\left(16a+8b+4c+2d\right)+\left(16a-8b+4c-2d\right)⋮7\\\left(16a+8b+4c+2d\right)-\left(16a-8b+4c-2d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}8\left(4a+c\right)⋮7\\4\left(4b+d\right)⋮7\end{matrix}\right.\)
Mà 8 và 4 không chia hết cho 7
=> \(\left\{{}\begin{matrix}4a+c⋮7\\4b+d⋮7\end{matrix}\right.\) (2)
Từ (1) và (2)
=> \(\left\{{}\begin{matrix}\left(4a+c\right)-\left(a+c\right)⋮7\\\left(4b+d\right)-\left(b+d\right)⋮7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a⋮7\\3b⋮7\end{matrix}\right.\)
Mà 3 không chia hết cho 7 => \(\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\)
Lại có: \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}c⋮7\\d⋮7\end{matrix}\right.\)
Vậy bài toán đã được chứng minh
Đề là chia hết cho 5 nha
Do \(f\left(x\right)⋮5\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)⋮5;\forall x\in Z\)
\(\Rightarrow a\cdot0+b\cdot0+c\cdot0+d⋮5\)
\(\Rightarrow d⋮5\)
\(\Rightarrow ax^3+bx^2+cx⋮5\)
\(f\left(1\right)=a+b+c⋮3;f\left(-1\right)=-a+b-c⋮5\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b⋮3\Rightarrow b⋮5\)
\(\Rightarrow a+c⋮5\)
\(P\left(2\right)=8a+4b+2c+d=6a+2\left(a+c\right)+4b+d⋮5\)
\(\Rightarrow6a⋮5\)
\(\Rightarrow a⋮5\Rightarrow c⋮5\)
\(\Rightarrow a;b;c;d⋮5\)