Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
Answer:
\(f\left(1\right)=2\Rightarrow1+a+b+c+d+e=2\)
\(f\left(2\right)=5\Rightarrow32+16a+8b+4c+2d+e=5\)
\(f\left(3\right)=10\Rightarrow243+81a+27b+9c+3d+e=10\)
\(f\left(4\right)=17\Rightarrow1024+256a+64b+16c+4d+e=17\)
\(f\left(5\right)=26\Rightarrow3125+625a+125b+25c+5d+e=26\)
Rút gọn các ẩn đi thì được:
\(a=-15\)
\(b=85\)
\(c=-224\)
\(d=274\)
\(e=-119\)
\(\Rightarrow f\left(x\right)=x^5-15x^4+85x^3-224x^2+274x-119\)
Ta có :
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{cases}}\)
mà \(f\left(1\right)=f\left(-1\right)\Rightarrow a+b+c=a-b+c\)
\(\Rightarrow b=-b\)
Đến bước này em không biết vì em học lớp 7
Từ \(b=-b\Rightarrow2b=0\Rightarrow b=0\)
\(\Rightarrow a+c=0\left(f\left(1\right)=0,b=0\right)\)
\(\Rightarrow a=-c\)
Thay \(b=0,a=-c\)vào biểu thức M ta được:
\(M=\left(-c\right)^{2019}+0^{2019}+c^{2019}+2018\)
\(=-c^{2019}+0+c^{2019}+2018\)
\(=\left(-c^{2019}+c^{2019}\right)+2018\)
\(=0+2018=2018\)
Vậy giá trị biểu thức M là \(2018\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
f(-7)=7
=>a*(-7)^2021+b*(-7)^2019+c*(-7)-5=7
=>a*7^2021+b*7^2019+c*7+5=-7
=>f(7)+10=-7
=>f(7)=-17