K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Ta có:

P(0)=dP(0)=d

=> d chia hết cho 5

P(1)=a+b+c+dP(1)=a+b+c+d

=> a + b + c chia hết cho 5 (1)

P(−1)=−a+b−c+dP(−1)=−a+b−c+d chia hết cho 5 (2)

Cộng (1) và (2) ta được:

2b + 2d chia hết cho 5

Mà d chia hết cho 5 => 2d chia hết cho 5

=> 2b chia hết cho 5

=> b chia hết cho 5

P(2)=8a+4b+2c+dP(2)=8a+4b+2c+d chia hết cho 5

=> 8a + 2c chia hết cho 5 ( Vì 4b + d chia hết cho 5 )

=> 6a + 2a + 2c chia hết cho 5

=> 6a + 2( a + c ) chia hết cho 5

=> 2( a + c ) chia hết cho 5 ( Vì a + b + c chia hết cho 5, b chia hết cho 5 )

=> 6a chia hết cho 5

=> a chia hết cho 5

=> c chia hết cho 5

Vậy a ; b ; c ; d chia hết cho 5

7 tháng 3 2020

Ta có: \(p\left(x\right)=ax^3+bx^2+cx+d\)

\(p\left(x\right)⋮5\forall x\)

\(\Rightarrow p\left(5\right)⋮5\Rightarrow\left(a5^3+b5^2+c^5+d\right)⋮5\)

\(\Rightarrow d⋮5\)

\(\Rightarrow\left(ax^{3\:}+bx^2+cx\right)⋮5\)

\(\Rightarrow p\left(1\right)=a1^3+b1^2+c\left[p\left(1\right)⋮5\right]\)

\(\Rightarrow-a+b+c\)

\(\Rightarrow p\left(1\right)+p\left(-1\right)=\left(a+b+c\right)+\left(-a+b+c\right)\)

\(\Rightarrow b⋮5\)

\(\Rightarrow\left(ax^3+cx\right)⋮5\)

\(\Rightarrow x\left(ax^2+c\right)⋮5\Rightarrow ax^{2\:}+c⋮5\)

\(\Rightarrow x=5\Rightarrow a.5^2+c⋮5\Rightarrow c⋮5\Rightarrow ax^{2\:}⋮5\Rightarrow a⋮5\)

\(\Rightarrow a,b,c⋮5\left(đpcm\right)\)

28 tháng 3 2021

F(0)=d⇒d⋮5F(0)=d⇒d⋮5

F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5

F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5

⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5

⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5

⇒a+c⋮5

27 tháng 4 2018

ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5

=> 0+0+0+d chia hết cho 5 => d chia hết 5

ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5

=> a+b+c+d chia hết 5

Mà d chia hết 5 => a+b+c chia hết 5               (1)

ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5

=> -a+b-c+d chia hết 5

Mà d chia hết 5 => -a+b-c chia hết 5              (2)

Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5

=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5

Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5

=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5              (3)

ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5

=> 8a+4b+2c+d chia hết 5

Mà b,d chia hết 5 => 8a+2c chia hết 5                             (4)

Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5

=> c chia hết 5

Vậy...

Đúng thì k nha mina !!

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5

theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5

 

4 tháng 3 2018

Tham khảo nhé:

Câu hỏi của Doraemon - Toán lớp 7 - Học toán với OnlineMath

9 tháng 6 2021

Help milk với

 

22 tháng 3 2017

Ừm đúng rồi.Cảm ơn bạn đã nhắc mk nhé.Ở đây mk cần xét thêm 1 trường hợp nữa là các số đó có tổng dư cũng chia hết cho 5. Cảm ơn bạn nhìu lắm nhé!!!!!leuleuleuleuleuleu

25 tháng 3 2017

Mình làm theo cách của bài185 trong sách "Nâng cao và phát triển toán 7 tập 2"của tác giả Vũ Hữu Bình nhé :

Vì f(x) chia hết cho 5 với mọi x thuộc Z

=>f(0) = a.\(0^3\)+b.\(0^2\)+c.0+d = d chia hết cho 5 ('1')

=>f(1) = a.\(1^3\)+b.\(1^2\)+c.1+d = a+b+c+d chia hết cho 5 ('2')

=>f(-1) = a.\(\left(-1\right)^3\)+b.\(\left(-1\right)^2\)+c.(-1)+d = -a+b-c+d chia hết cho 5 ('3')

=>f(2) = a.\(2^3\)+b.\(2^2\)+c.2+d = 8a+4b+2c+d chia hết cho 5 ('4')

Lấy (2)-(1) = a+b+c+d-d = a+b+c chia hết cho 5 ('5')

Lấy(2)+(3)-(1) = a+b+c+d-a+b-c+d-d = 2b chia hết cho 5 mà 2 không chia hết cho 5 => b chia hết cho 5 ('6')

Lấy (3)-(1)-(6) = -a+b-c+d-d-b = -a-c chia hết cho 5 ('7')

Lấy ('4')-('1')-4.('6')+2.('7') = 8a+4b+2c+d-d-4b+2(-a-c) = 8a+2c+(-2a)+(-2c) = 6a chia hết cho 5 (vì mỗi số hạng đều chia hết cho 5 đã cm ở trên)

Mà 6 không chia hết cho 5 => a chia hết cho 5 ('8')

Lấy ('7')+('8') = -a-c+a = -c chia hết cho 5 => -1.(-c) = c chia hết cho 5 ('9')

Vậy từ ('1');('2');('8');('9') => f(x) chia hết cho 5 với mọi x thuộc Z thì các hệ số a;b;c;d cũng chia hết cho 5