Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M(1)=3
M(-2)=2
=>a+b=3 và -2a+b=2
=>a=1/3 và b=8/3
b: G(-1)=F(2)
=>(a+1)*(-1)^2-3=5*2+7a
=>a+1-3-10-7a=0
=>-6a-12=0
=>a=-2
Cho f(x) = 0
=> ( x -2 ).( x+3) = 0
=> x -2 = 0 => x= 2
x + 3 = 0 => x = - 3
=> x =2 , x = -3 là nghiệm của f(x)
mà nghiệm của f(x) cũng là nghiệm của g(x)
=> x = 2; x = -3 là nghiệm của g(x)
ta có: x = 2 là nghiệm của g(x)
=> 2^3 + a. 2^2 + b. 2 + 2 = 0
8 + 4a + 2b + 2 = 0
2.( 4 + 2a + b + 1) =0
=> 4 + 2a + b + 1 = 0
2a + b + 5 = 0
b = -5 - 2a
ta có: x = -3 là nghiệm của g(x)
=> (-3)^3 + a . ( -3)^2 + b.(-3) + 2 = 0
- 27 + 9a - 3b + 2 = 0
- 25 + 9a - 3.( -5 - 2a) = 0
- 25 + 9a + 15 + 6a = 0
-10 + 15 a = 0
15a = 10
a = 10 / 15
a = 2/3
mà b = -5 - 2a
b = -5 - 2. 2/3
b = - 5 - 4/ 3
b = -19/3
KL: a = 2/3, b = -19/3
xét f(x) = 2x - 4 = 0
=> 2x = 4
=> x = 2
xét g(x) = x^2 - ax + 2 = 0
=> g(2) = 2^2 - 2a + 2 = 0
=>6 - 2a = 0
=> 2a = 6
=> a = 3
vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)
Ta có f(x)=0
<=> 2x-4=0
<=> 2x=4
<=> x=2
Vậy x=2 là nghiệm của f(x)
Mà nghiệm của f(x) cũng là nghiệm của g(x)
=> g(2)=0
<=> 2^2-2a+2=0
<=>2a=6
<=>a=3
Ta có: f(x) = (x-1)(x+2) = 0
\(\Rightarrow\) x-1 = 0 hoặc x+2 = 0
\(\Rightarrow\) x = 1 hoặc x = -2
Vậy x = 1 hoặc x = -2 là nghiệm của đa thức f(x)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên g(1) = 0 hay g(-2) = 0
Ta có: g(1) = 1^3 + a.1^2 + b.1 + 2 = 0
\(\Rightarrow\) 1 + a + b + 2 = 0
\(\Rightarrow\) a + b = -3
\(\Rightarrow\) b = (-3) - a (1)
Lại có: g(-2) = (-2)^3 + a.(-2)^2 + b.(-2) + 2 = 0
\(\Rightarrow\) (-8) + 4a - 2b + 2 = 0
\(\Rightarrow\) 4a - 2b = 6 (2)
Từ (1) và (2) ta suy ra: 4a - 2b = 4a - 2.(-3 - a) = 4a + 6 +2a = 6
\(\Rightarrow\) 6a + 6 = 6
\(\Rightarrow\) 6a = 0
\(\Rightarrow\) a = 0
Thay vào (1) ta có: b = -3 - 0 = -3
Vậy a = 0; b = -3
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
ta có: f(x)=(x-3)(x+4)=0 =>x-3=0 hoặc x+4=0
=>x=3 hoặc x=-4
vậy ta có nghiệm của đa thức f(x) là 3 và -4
mà nghiệm của đa thức f(x) cũng là nghiệm cảu đa thức g(x) nên thay vào ta được:
g(x)=3^2-3a+b=0 và g(x)=(-4)^2+4a+b=0
(=)9-3a+b=0 và 16+4a+b=0
(=)-3a+b=-9 (1) và 4a+b=-16 (2)
Trừ vế (1) cho vế (2) ta được -7a=7 => a=-1
thạy a=-1 vào (1) ta được (-3)*(-1)+b=-9 =>b=-12
Vậy a=-1 và b=-12
f(x)=3-x-a
nghiệm đa thức bằng 2 ⇒ x=2
⇒f(2)=3-2-a=0
⇒1-a=0
⇒a=1
Ta có: nghiệm đa thức bằng 2 thì f(x) = 0
\(\Rightarrow\) f(2) = 3 - 2 - a = 0
f(2) = 1 - a = 0
\(\Rightarrow\)a = 1 - 0 = 1
Vậy a = 1 để nghiệm của đa thức f(x) = 3 - x - a có nghiệm là 2