K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2015

\(f\left(1\right)=1+1+1^2+...+1^{2013}=1.2014=2014\)

\(f\left(-1\right)=1-1+1-1+1-1+...+1-1=0+0+0+...+0=0\)

đúng nha

19 tháng 4 2021

undefined

20 tháng 7 2021

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

20 tháng 7 2021

Bài 1 : 

\(P\left(0\right)=d=2017\)

\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)

\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)

\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)

Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)

Thay vào (*) ta được \(a+c=4\)(***)

Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****) 

(***) => \(8a+8c=32\)(*****)

Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)

Vậy  ....

20 tháng 7 2021

MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LẮM Ạ.

30 tháng 5 2020

f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1 

= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1 

= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1 

= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1

= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1

= x - 1 = 2012 - 1 = 2011

27 tháng 4 2019

\(f\left(x\right)=1+x+x^2+x^3+...+x^{2010}+x^{2011}\)

\(f\left(1\right)=1+1+1+1+....+1+1\)(2013 hạng tử)

\(f\left(1\right)=2013\)

\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)

\(f\left(-1\right)=1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\)

\(f\left(-1\right)=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+....+\left[1+\left(-1\right)\right]+\left(-1\right)\)

\(f\left(-1\right)=-1\)

27 tháng 4 2019

Nhầm :v làm lại

\(f\left(1\right)=1+1+1^2+1^3+....+1^{2010}+1^{2011}.\)(2012 số 1)

\(f\left(1\right)=1.2012=2012\)

\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)

\(f\left(-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)(1006 cặp)

\(f\left(-1\right)=0\)

25 tháng 4 2018

help Võ Đông Anh Tuấn

25 tháng 5 2018

helpngonhuminhNguyễn Huy TúĐức Minh

25 tháng 6 2017

Ta có: \(f\left(1\right)=1+1+1+....+1\)

=> \(f\left(1\right)=2012\)

Ta lại có: \(f\left(-1\right)=1-1+1-1+...+1-1\) = 0

25 tháng 6 2017

ta có : \(f\)(1) = \(1+1+1+1+.....+1+1\) = 1 + 2011 = \(2012\)

: \(f\)(-1) = \(1-1+1-1+.....+1-1\) = 0