Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(x)+B(x)
=5x^3-2x+3x^2+2x-1
=5x^3+3x^2-1
b: A(x)-C(x)
=5x^3-2x-2x^3+3x^2-3x-1
=3x^3+3x^2-5x-1
c: M(x)=B(x)+C(x)
=3x^2+2x-1+2x^3-3x^2+3x+1
=2x^3+5x
d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0
=>x=1/3 là nghiệm của B(x)
a: \(A\left(x\right)+B\left(x\right)\)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)
\(=8x^2-12x\)
b: C(x)=A(x)-B(x)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)
\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)
Để tìm đa thức B(x), ta cần lấy A(x) trừ đi đa thức 2x^3 - x^2 + 3x + 1
A(x) - (2x^3 - x^2 + 3x + 1) = (-3x^3 + 4x + 5x^3 + x^2 - 8x-2)- (2x^3-x^2 + 3x + 1)
=-3x^3 + 4x + 5x^3 + x^2 - 8x-2- 2x^3 + x^2-3x-1
= 2x^3 + 6x
Vậy đa thức B(x) = -2x^3 - 6x.
cho mình hỏi chút có ai chơi free fire nếu có nhắn mình nha thanhk bạn
a, Ta có : \(P\left(x\right)+Q\left(x\right)\)ta được :
\(2x^3-3x^2+x+x^3-x^2+2x+1=3x^3-3x^2+3x+1\)
b, \(P\left(x\right)+M\left(x\right)=2Q\left(x\right)\Rightarrow M\left(x\right)=2Q\left(x\right)-P\left(x\right)\)
\(M\left(x\right)=2x^3-2x^2+4x+2-2x^3+3x^2-x=x^2+3x+2\)
c, Thay x = -2 vào đa thức M(x) ta được :
\(4-6+2=0\)* đúng *
Vậy x = -2 là nghiệm của đa thức M(x)
a: A(x)=2x^3+x^2+4x+1
B(x)=-2x^3+x^2+3x+2
b: M(x)=A(x)+B(x)
=2x^3+x^2+4x+1-2x^3+x^2+3x+2
=2x^2+7x+3
c: M(x)=0
=>2x^2+7x+3=0
=>2x^2+6x+x+3=0
=>(x+3)(2x+1)=0
=>x=-3 hoặc x=-1/2
`c-(x^2+2x+1)=x^3+3x^2 -2x^2+7`
`=> c-x^2-2x-1=x^3+3x^2 -2x^2+7`
`=> c=x^3+3x^2 -2x^2+7+x^2+2x+1`
`=c=x^3 + (3x^2 -2x^2+x^2) + 2x+(7+1)`
`=>c=x^3 + 2x^2 +2x+8`
Sao lại có dấu "=" ở dòng 4