K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

b)

\(-x^2+3x-2=-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{3.\left(-1\right).\left(-2\right)-9}{2.\left(-2\right)}\\ =-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\)

\(-\left(x+\dfrac{3}{-2}\right)^2\le0\) nên

\(-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

vậy MAXA = 0,25 tại x=1,5

24 tháng 3 2017

bạn giải thích thêm cái dòng đầu tiên đk k

4 tháng 3 2022

\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)

\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)

b,\(M\left(x\right)=-3x^3-x^2+2=0\)

Nghiệm xấu lắm bạn

15 tháng 3 2018

a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)

+, \(x=0\Leftrightarrow P=3.0^2+5=5\)

+, \(x=3\Leftrightarrow P=3.3^2+5=17\)

b/ Với mọi x ta có :

\(3x^2\ge0\)

\(5>0\)

\(\Leftrightarrow3x^2+5>0\)

\(\Leftrightarrow P>0\)

\(\Leftrightarrow P\) luôn dương với mọi x

15 tháng 3 2018

Biết làm a là: 3*(-1)^2+5=3+5=8

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

a) Ta có:

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)

\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)

\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

Bài 2: 

Đặt P(x)=0

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>x+1=0

hay x=-1

Bài 3: 

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔMAB=ΔMDC

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

a: f(2)=2*2^2-3*2+4=8-6+4=2+4=6

b: h(x)=-2x^2+x-1+f(x)

=-2x^2+x-1+2x^2-3x+4

=-2x+3

12 tháng 3 2023

\(a,\) \(f\left(2\right)=2.2^2-3.2+4\) \(\Rightarrow f\left(2\right)=6\)

\(b,h\left(x\right)-f\left(x\right)=-2x^2+x-1\)

\(\Rightarrow h\left(x\right)=-2x^2+x-1+f\left(x\right)\)

\(\Rightarrow h\left(x\right)=-2x^2+x-1+2x^2-3x+4\)

\(\Rightarrow h\left(x\right)=-2x+3\)