Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)
Ta có: x2 – x – 12 = x2 – x – 16 + 4
= (x2 – 16) – (x – 4)
= (x – 4).(x + 4) – (x – 4)
= (x – 4).(x + 4 – 1)
= (x – 4).(x + 3)
Giải
a) Vẽ một n - giác lồi rồi vẽ các đường chéo xuất phát từ một đỉnh của n - giác lồi đó, ta được (n - 2) tam giác
Tổng các góc của hình n - giác lồi bằng tổng các góc của (n - 2) tam giác, tức là có số đo bằng (n - 2).1800
Hình n - giác đều có n góc bằng nhau nên mỗi góc có số đo là \(\frac{\left(n-2\right).180^{0^{ }}}{n}\)
b) Với hình lục giác đều ta có n = 6, nên số đo góc của nó là\(\frac{\left(6-2\right).180^0}{6}=120^0\)
Với hình bát giác đều ta có n = 8, nên số đo góc của nó là \(\frac{\left(8-2\right).180^0}{8}=135^0\)
4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).
Bài này lạ quá. Hình vẽ là một tứ giác lõm.
Mình hướng dẫn ngắn gọn lời giải
a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh
b, Có góc QMN = 80 độ
=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)
CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)
Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ
=> Góc PQM = 10 độ
Mà góc PQM = góc PNM => Góc PNM = 10 độ
d, Xét tam giác QPM cân ở P ( PQ = PN)
=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ
e, Xét tam giác PQM có QN là đường trung trực của PM
=> Tam giác PQM cân ỏ Q => QP=PN=QM
Mà QM =MN
=> Tứ giác MNQP có 4 cạnh bằng nhau.
Bài 1:
\(a.5^5-5^4+5^3\)
\(=5^3.5^2-5^3.5+5^3.1\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.3.7⋮7\)
\(\)
\(\)
\(\)
Bài 2:
\(a.32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow n=2\)
\(b.9.27\le3^n\le243\)
\(\Rightarrow3^2.3^3\le3^n\le3^5\)
\(\Rightarrow3^5\le3^n\le3^5\)
\(\Rightarrow n=5\)
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A