Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1
\(\frac{n+4}{2n-1}\)= \(\frac{2\left(n+4\right)}{2n-1}\)= \(\frac{2n+8}{2n-1}\)= \(\frac{2n-1+9}{2n-1}\)= \(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1
=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}
=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}
=> n \(\in\){ 1;2;5; 0; -1; -4}
Vậy...
\(P=\frac{n+4}{2n-1}\)
\(\Leftrightarrow n+4⋮2n-1\)
\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)
\(\Leftrightarrow2n+8⋮2n-1\)
\(\Leftrightarrow2n-1+9⋮2n-1\)
Vì \(2n-1⋮2n-1\)
\(\Leftrightarrow9⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng xét giá trị
2n-1 | 1 | -1 | 3 | -3 | 9 | -9 |
2n | 2 | 0 | 4 | -2 | 10 | -8 |
n | 1 | 0 | 2 | -1 | 5 | -4 |
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản