Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = = 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=>
=> AH = ( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
<=>
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD =
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - 8,57 ( cm )
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha
a) Xét tam giác HAB và tam giác ABC có:
Góc AHB= góc BAC (= 900 )
B> là góc chung
⇒ tam giác HAB ~ tam giác ABC (g.g)
b) Xét ΔΔ ABC vuông tại A: BC2 = AB2 + AC2
Hay BC2 = 122 + 162
BC2 = 144 + 256 = 400
=> BC = √400 = 20 (cm)
Ta có : Δ HAB ∼ Δ ABC
=> \(\frac{HA}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HA}{12}=\frac{12}{20}\)
=> AH = \(\frac{12.12}{20}=7,2\) cm
c)
Ta có
DE là tia phân giác của góc ADB trong tam giác DAB,
áp dụng t/c tia phân giác thì\(\frac{DA}{DB}=\frac{AE}{EB}\)
DG là tia phân giác cảu góc CDA trong tam giác CDA.
áp dụng t/c tia phân giác thì \(\frac{CD}{DA}=\frac{CF}{FA}\)
VẬy \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{DA}{DB}.\frac{DB}{DC}.\frac{CD}{DA}=1\)(dpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
a) Xét\(\Delta HBA\) và\(\Delta ABC\) có:
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(gg\right)\)
b) \(\Delta ABC\) có \(\widehat{A}=90^o\left(gt\right)\)
\(\Rightarrow BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC^2=12^2+16^2\)
\(\Rightarrow BC^2=144+256\)
\(\Rightarrow BC^2=400\)
\(\Rightarrow BC=20\left(cm\right)\)
b. Ta có: \(\Delta\)HBA \(\sim\)\(\Delta\)ABC ( cmt )
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) \(\Leftrightarrow\dfrac{AH}{16}=\dfrac{12}{20}\Rightarrow AH=9,6\)
c. Xét \(\Delta\) ABC có: AD là đường phân giác ( gt )
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)
Xét \(\Delta\) ADB có: DE là đpg ( gt )
\(\Rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\)(2)
Xét \(\Delta\) ADC có: DF là đpg ( gt )
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\)(3)
Từ 1,2 và 3 suy ra: \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{AB}{AC}.\dfrac{DC}{DA}\)
\(\Leftrightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{AB}{AC}.\dfrac{DC}{DB}\)
Mà: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) ( CM phần 1 )
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DB}{DC}.\dfrac{DC}{DB}\)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Bạn tự vẽ hình nha : )