Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB = AC (gt)
=> Góc B = Góc C ( quan hệ giữa góc và cạnh đối diện)
b) Ta có: AD = AE (gt)
=> Góc ADE = Góc AED ( quan hệ giữa góc và cạnh đối diện) => tam giác ADE cân tại A
Vì 2 tam giác này cùng cân tại A nên:
Ta có: góc B = góc C = \(\frac{180-A}{2}\)
Ta lại có: góc ADE = góc AED (cmt) =\(\frac{180-A}{2}\)
=> Góc ADE = góc ABC
Mà 2 góc này ở vị trí đồng vị => DE//BC
a) nối DC; nối BE
xét tam giác ADC và tam giác AEB có:
AD=AE(gt)
AB=AC(gt)
góc A(chung)
=> tam giác ADC= tam giác AEB(c.g.c)
=> DC=BE
ta có: BD=AB-AD
EC=AC-AE
AB=AC
AE=AD
=> BD=EC
xét tam giác DBC và tam giác ECB có:
BD=EC(cmt)
DC=BE(cmt)
BC(chung)
=> tam giác DBC= tam giác ECB(c.c.c)
=> góc B= góc C
b)
ta có: AD=AE=> tam giác AED cân tại A
=> góc ADE=(180*-A)/2
ta có tam giác ABC có góc B=góc C
=> gócB=(180*-A)/2
=> góc ADE= góc ABC
=> DE//BC
a)Trên cạnh BC lấy điểm M sao cho BM = CM
Xét tam giác AMB và tam giác AMC có :
AM: chung
BM=CM
AB=AC
=> tam giác AMB= tam giác AMC ( c.c.c)
=> góc B=góc C
b) Gọi giao điểm của DE và AM là K
Theo câu a) tam giác AMB = tam giác AMC
=> góc AMB = góc AMC và góc BAM= góc CAM
Ta có góc AMB = góc AMC
Mà góc AMB và góc AMC là 2 góc kề bù nên góc AMB= góc AMC= 90 độ
=> BC vuông góc với AM
Xét tam giác AKD và tam giác AKE có :
AD=AE ( gt)
góc DAK= góc EAK
AK chung
=> tam giác AKD = tam giác AKE ( c.g.c)
=> góc AKD = góc AKE
Mà góc AKD và góc AKE là 2 góc kề bù nên góc AKD=góc AKE=90 độ
=. DE vuông góc vs AM
Vì DE và BC cung vuông góc vs AM nên DE//BC
A B C D E
a) Xét \(\Delta ABC\) có: \(AB=AC\left(gt\right)\)
\(\Rightarrow\)\(\Delta ABC\) cân tại A (t/c)
\(\Rightarrow\)\(\widehat{B} = \widehat{C} = \frac{180^O - \widehat{A}}{2}\)(t/c)
b) Xét \(\Delta ADE\) có: \(AD=AE\left(gt\right)\)
\(\Rightarrow\)\(\Delta ADE \) cân tại A (t/c)
\(\Rightarrow\)\(\widehat{D} = \widehat{E} = \frac{180^O - \widehat{A}}{2}\)
\(\Rightarrow\)\(\widehat{B} = \widehat{D}\) (Vì cùng bằng \(\frac{180^O - \widehat{A}}{2}\))
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)\(BD//CE (dpcm)\)
a) Xét ΔABC có AB=AC(gt)
=>ΔABC cân tại A
=>\(\widehat{B}=\widehat{C}\)
b)Vì ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (1)
Xét ΔADE có: AD=AE(gt)
=>ΔADE cân tại A
=>\(\widehat{ADE}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1) (2) suy ra:
\(\widehat{ABC}=\widehat{ADE}\)
Mà hai góc này ở vị trí đồng vị
=>DE//BC
a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
AD = AB (giả thuyết)
\(\widehat{A_1}=\widehat{A_2}=90^0\)
AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)
\(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\)
Hay DE vuông góc với BC
A B C D E N
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
hình tự kẻ nha
a, XÉT \(\Delta BDC\), có I , M là TĐ của CD , BC
\(\Rightarrow\)IM là đường trung bình của tg BDC
\(\Rightarrow\)IM = 1/2 BD (t/c đg trung bình )
Xét tg CDE có N là TĐ của DE
I là TĐ của CD
\(\Rightarrow\)NI là đường trung bình của tg CDE
\(\Rightarrow\)NI = 1/2 CE (t/c đg trung bình )
Ta có BD = CE (gt)
NI=1/2 CE
MI = 1/2BD
\(\Rightarrow\)NI = MI
\(\Rightarrow\Delta NIM\)cân tại I
b, Xét \(\Delta CBD\),có MI là đường trung bình
\(\Rightarrow\)MI // AB (t/c đường trung bình )
\(\Rightarrow\)\(\widehat{NMI}=\widehat{APQ}\)( so le trong) (1)
\(\Delta CDE\), có NI là đường trung bình
\(\Rightarrow\)NI // AC (t/c đường trung bình)
\(\Rightarrow\)\(\widehat{MNI}=\widehat{MQC}\)( đồng vị)
mà \(\widehat{MQC}=\widehat{AQP}\)(đối đỉnh )
\(\Rightarrow\widehat{MNI}=\widehat{AQP}\) (2)
\(\Delta MNI\)cân tại I \(\Rightarrow\widehat{INM}=\widehat{IMN}\) (3)
từ (1) , (2) và (3) \(\Rightarrow\widehat{APQ}=\widehat{AQP}\)
\(\Rightarrow\Delta APQ\) cân tại A
c, Gọi AD là tia p/g của góc BAC \(\Rightarrow2\widehat{DAC}=\widehat{BAC}\)( tính chất tia p/g) (*)
xét \(\Delta APQ\)có \(\widehat{BAC}=\widehat{APQ}+\widehat{AQP}\)(tính chất góc ngoài)
mà góc APQ = góc AQP suy ra góc BAC= \(\widehat{2AQP}\)(**)
từ (*) và (**) \(\Rightarrow\widehat{DAC}=\widehat{AQP}\)
Mà 2gocs trên lại ở vị trí so le trong của AD và PM
\(\Rightarrow AD//PM\)
\(\Rightarrow\) MN // vs tia p/g của góc A trong tg ABC
#mã mã#
a: Xét ΔEAB và ΔDAC có
AE=AD
AB=AC
EB=DC
Do đó: ΔEAB=ΔDAC
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là đường phân giác
Bài này không dùng tam giác cân làm sao được
ko lm đc ák