Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu bn ns cng có hình cho dễ nhìn r mink mới giúp được
Tớ không vẽ hình, cậu tự vẽ nha<<<
GIẢI:
Ta có :
\(ABD+BAC=90^0\)
\(ACE+BAC=90^0\)
\(\Rightarrow ABD=ACE\)
Mà : \(ABD+ADI=180^0\)
\(ACE+ACK=180^0\)
\(\Rightarrow ADI=ACK\)
Xét tam giác ABI và KCA có:
\(AB=KC\left(GT\right)\)
\(ADI=ACK\left(CMtrên\right)\)
\(BI=CA\left(GT\right)\)
\(\Rightarrow TgABI=TgKCA\left(c.g.c\right)\)
\(\Rightarrow AI=KA\)( cặp cạnh tương ứng)
\(\Rightarrow\)Tam giác AIK cân tại A (1)
Vì tgABI=tgKCA
\(\Rightarrow IAB=AKC\) ( cặp góc tương ứng)
Mặt khác : \(AKC+BAC+KAC=90^0\)
\(\Rightarrow IAB+BAC+KAC=90^0\)hay \(IAK=90^0\)(2)
Từ (1) và (2) suy ra :
TG AIK vuông cân tại A
( tớ không làm được kí hiệu góc mong cậu thông cảm )
Tam giác ABI = Tam giác KCA(c.g.c)
Suy ra: AI = AK và góc I = góc CAK
Ta có: góc I + góc IAD = 90 độ
góc CAK + góc IAD = 90 độ
IAK = 90 độ
Tam giác AIK có: góc IAK = 90 độ và AI = AK
Vậy tam giác AIK vuông cân tại A.
Dễ thấy ^ABD = ^ACE (Cùng phụ ^BAC) <=> 1800 - ^ABD = 1800 - ^ACE => ^ABI = ^KCA
Xét \(\Delta\)AIB và \(\Delta\)KAC: AB=KC; ^ABI = ^KCA; IB = AC => \(\Delta\)AIB = \(\Delta\)KAC (c.g.c)
=> AI = KA (2 cạnh tương ứng) (1)
Và ^AIB = ^KAC. Ta có: ^ABD là góc ngoài \(\Delta\)AIB => ^ABD = ^AIB + ^BAI
=> ^ABD = ^KAC + ^BAI. Mà ^ABD + ^BAC = 900 (Do \(\Delta\)ADB vuông ở D)
=> ^KAC + ^BAI + ^BAC = 900 => ^IAK = 900 (2)
Từ (1) và (2) => \(\Delta\)AIK vuông cân tại A (đpcm).
Tam giác ABI = tam giác KCA
Suy ra : AI = AK và góc I = góc CAK
Ta có : góc I + góc IAD = 90 độ
góc CAK + góc IAD = 90 độ
IAK = 90 độ
Tam giác AIK có : góc IAK = 90 độ và AI = Ak
Vậy tam giác AIK vuông cân tại A
Xét Δ A B D vuông tại D có: A 1 ^ + B 1 ^ = 90 0 (trong tam giác vuông 2 góc nhọn phụ nhau)
Xét Δ A E C vuông tại E có A 1 ^ + C 1 ^ = 90 0 (trong tam giác vuông 2 góc nhọn phụ nhau)
Do đó: B 1 ^ = C 1 ^ 1 (cùng phụ với góc A 1 ^ )