Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+60^0=90^0\)
hay \(\widehat{C}=30^0\)
Vậy: \(\widehat{C}=30^0\)
a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)
mà cạnh đối diện với góc C là cạnh AB
và cạnh đối diện với góc B là cạnh AC
và cạnh đối diện với góc A là cạnh BC
nên AB<AC<BC(đpcm)
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+30^o=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=150^o\)
a) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà x = 2y
\(\Rightarrow2y+y=150^o\)
\(\Rightarrow3y=150^o\)
\(\Rightarrow y=50^o\)
\(\Rightarrow x=50^o.2=100^o\)
Vậy \(y=50^o,x=100^o\)
b) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà \(x-y=10^o\)
\(\Rightarrow x=\left(150^o+10^o\right):2=80^o\)
\(\Rightarrow y=150^o-80^o=70^o\)
Vậy \(x=80^o,y=70^o\)
c) Ta có: \(3x=2y\Rightarrow\frac{x}{3}=\frac{y}{2}\) và \(\widehat{A}+\widehat{B}=150^o\) hay \(x+y=150^o\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{150^o}{5}=30^o\)
+) \(\frac{x}{3}=30^o\Rightarrow x=90^o\)
+) \(\frac{y}{2}=30^o\Rightarrow y=60^o\)
Vậy \(x=90^o,y=60^o\)
a,
\(\Delta ABC\) có: A + B + C = 180*
=> B + C = 180* - A
Thay A = 75*
=> B + C = 180* - 75*
=> B + C = 105*
Áp dụng dạng toán tổng - tỉ, ta có:
B = 105* : ( 2 + 1 ) . 2 = 70*
C = 105* - 70* = 35*
Vậy 2 góc B và C trong tam giác ABC có số đo lần lượt là: 70*, 35*
b,
\(\Delta ABC\) có: A + B + C = 180*
=> B + C = 180* - A
Thay A = 75*
=> B + C = 180* - 75*
=> B + C = 105*
Áp dụng dạng toán tổng hiệu, ta có:
B = ( 105* - 25* ) : 2 = 40*
C = ( 105* + 25* ) : 2 = 65*
Vậy 2 góc B và C trong tam giác ABC có số đo lần lượt là: 40*, 65*
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC
Ta có hình vẽ:
Ta có: ADC + ADB = 180o (kề bù)
=> ADC + 80o = 180o
=> ADC = 180o - 80o = 100o
Vì AD là phân giác của góc A nên \(CAD=DAB=\frac{CAB}{2}\)
Xét Δ ACD có: CAD + ADC + ACD = 180o
=> \(\frac{CAB}{2}\) + 100o + ACD = 180o
=> \(\frac{CAB}{2}\) + ACD = 180o - 100o = 80o (1)
Xét Δ ADB có: ADB + DAB + ABD = 180o
=> 80o + \(\frac{CAB}{2}\) + ABC = 180o
=> \(\frac{CAB}{2}\) + ABC = 180o - 80o = 100o (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{CAB}{2}+ABC\right)-\left(\frac{CAB}{2}+ACD\right)=100^o-80^o\)
=> ABC - ACD = 20o
=> \(\frac{3}{2}ACD-ACD=20^o\)
\(\Rightarrow\frac{1}{2}ACD=20^o\Rightarrow ACD=20^o:\frac{1}{2}=40^o\)
=> ABC = 20o + 40o = 60o
Lại có: ABC + ACD + CAB = 180o
=> 60o + 40o + CAB = 180o
=> 100o + CAB = 180o
=> CAB = 180o - 100o = 80o
Vậy CAB = 80o; ABC = 60o; ACB = ACD = 40o
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: BH=BC/2=3(cm)
=>AH=4(cm)
c: Ta có: AH là đường trung tuyến
mà AG là đường trung tuyến
nên A,H,G thẳng hàng
d: Xét ΔABG và ΔACG có
AB=AC
\(\widehat{BAG}=\widehat{CAG}\)
AG chung
Do đó: ΔABG=ΔACG